Page 46 - manuscript_ijb05596
P. 46

10.1038/s41467-023-43364-2.

                   [52] Moreira  TLS,  Feijen  J,  Van  BCA,  et  al.  Enzyme-catalyzed  crosslinkable  hydrogels:

                       emerging strategies for tissue engineering. Biomaterials. 2012; 33(5): 1281-1290. doi:
                       10.1016/j.biomaterials.2011.10.067.


                   [53] Zhang Y, Cao Y, Zhao H, et al. An injectable BMSC-laden enzyme-catalyzed crosslinking
                       collagen-hyaluronic acid hydrogel for cartilage repair and regeneration. J Mater Chem B.

                       2020; 8(19): 4237-4244. doi: 10.1039/d0tb00291g.

                   [54] Mahran A, Howaili F, Bhadane R, et al. Functional enzyme delivery via surface-modified

                       mesoporous  silica  nanoparticles  in  3D  printed  nanocomposite  hydrogels.  European  J

                       Pharm Sci. 2025; 211: 107132. doi: 10.1016/j.ejps.2025.107132.

                   [55] Sakai S, Yamamoto S, Hirami R, et al. Enzymatically gellable chitosan inks with enhanced

                       printability by chitosan nanofibers for 3D printing of wound dressings. Eur Polym J. 2024;

                       210: 112960. doi: 10.1016/j.eurpolymj.2024.112960.

                   [56] Huang J, Lei X, Huang Z, et al. Bioprinted gelatin-recombinant type III collagen hydrogel

                       promotes wound healing. Int J Bioprinting. 2022; 8(2): 517. doi: 10.18063/ijb.v8i2.517.

                   [57] Jafari H, Alimoradi H, Delporte C, et al. An injectable, self-healing, 3D printable, double
                       network co-enzymatically crosslinked hydrogel using marine poly- and oligo-saccharides


                       for  wound  healing  application.  Appl  Mater  Today.  2022;  29:  101581.  doi:
                       10.1016/j.apmt.2022.101581.

                   [58] Zhou  M,  Lee  BH,  Tan  YJ,  et  al.  Microbial  transglutaminase  induced  controlled

                       crosslinking  of  gelatin  methacryloyl  to  tailor  rheological  properties  for  3D  printing.

                       Biofabrication. 2019; 11(2): 025011. doi: 10.1088/1758-5090/ab063f.

                   [59] Hassan M, Misra M, Taylor GW, et al. A review of AI for optimization of 3D printing of

                       sustainable  polymers  and  composites.  Compos  Part  C.  2024;  15:  100513.  doi:

                       10.1016/j.jcomc.2024.100513.

                   [60] Mohammad S, Akand R, Cook KM, et al. Leveraging Deep Learning and Generative AI

                       for  Predicting  Rheological  Properties  and  Material  Compositions  of  3D  Printed

                       Polyacrylamide Hydrogels. Gels. 2024; 10(10): 660. doi: 10.3390/gels10100660.

                   [61] Chen B, Dong J, Ruelas M, et al. Artificial intelligence-assisted high-throughput screening

                       of printing conditions of hydrogel architectures for accelerated diabetic wound healing.
                                                            45
   41   42   43   44   45   46   47   48   49   50   51