Page 53 - manuscript_ijb05596
P. 53
33(14): 2213008. doi:10.1002/adfm.202213008.
[122] Huang W, Guo Q, Wu H, et al. Engineered exosomes loaded in intrinsic
immunomodulatory hydrogels with promoting angiogenesis for programmed therapy of
diabetic wounds. ACS Nano. 2025; 19(14): 14467-14483. doi: 10.1021/acsnano.5c02896.
[123] Kim K, Yang J, Li C, et al. Anisotropic structure of nanofiber hydrogel accelerates
diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic
microenvironments. Bioact Mater. 2025; 47: 64-82. doi: 10.1016/j.bioactmat.2025.01.004.
[124] Chen J, Qin S, Liu S, et al. Targeting matrix metalloproteases in diabetic wound
healing. Front Immuno. 2023; 14: 1089001. doi: 10.3389/fimmu.2023.1089001.
[125] Lan B, Zhang L, Yang L, et al. Sustained delivery of MMP-9 siRNA via
thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnol. 2021;
19(1): 130. doi: 10.1186/s12951-021-00869-6.
[126] Lei H, Fan D. A combination therapy using electrical stimulation and adaptive,
conductive hydrogels loaded with self-assembled nanogels incorporating short interfering
RNA promotes the repair of diabetic chronic wounds. Adv Sci. 2022; 9(30): 2201425.
doi:10.1002/advs.202201425.
[127] Wu L, Chen Y, Zeng G, et al. Supramolecular peptide hydrogel doped with
nanoparticles for local siRNA delivery and diabetic wound healing. Chem Eng J. 2023;
457: 141244. doi: 10.1016/j.cej.2022.141244.
[128] Zheng X, Deng S, Li Y, et al. Targeting m6A demethylase FTO to heal diabetic
wounds with ROS-scavenging nanocolloidal hydrogels. Biomaterials. 2025; 317: 123065.
doi: 10.1016/j.biomaterials.2024.123065.
[129] Shi S, Hu L, Hu D, et al. Emerging Nanotherapeutic Approaches for Diabetic Wound
Healing. Int J Nanomed. 2024; 19: 8815-8830. doi: 10.2147/ijn.s476006.
52