Page 111 - AIH-1-2
P. 111

Artificial Intelligence in Health                                 Schema-less text2sql conversion with LLMs



            Methodology: Youssef Mellah, Veysel Kocaman        8.   Popescu AM, Etzioni O, Kautz H. Towards a Theory of
            Formal analysis: Youssef Mellah, Veysel Kocaman, Hasham   Natural Language Interfaces to Databases. In: Proceedings of
                                                                      th
               UI Haq                                             the 8  International Conference on Intelligent user Interfaces
            Writing – original draft: Youssef Mellah, Veysel Kocaman,   (IUI ‘03). New York, NY, USA: Association for Computing
               Hasham UI Haq                                      Machinery; 2003. p. 149-157.
            Writing – review & editing: Veysel Kocaman, David Talby     doi: 10.1145/604045.604070

            Ethics approval and consent to participate         9.   Bertomeu N, Uszkoreit H, Frank A, Krieger HU, Jörg B.
                                                                  Contextual Phenomena and Thematic Relations in Database
            Not applicable.                                       QA Dialogues: Results from a Wizard-of-Oz experiment. In:
                                                                  Proceedings of the Interactive Question Answering Workshop
            Consent for publication                               at HLT-NAACL. New  York, NY, USA: Association for
                                                                  Computational Linguistics; 2006. p. 1-8.
            Not applicable.
                                                               10.  Saha D, Floratou A, Sankaranarayanan K, Minhas UF,
            Availability of data                                  Mittal AR, Özcan F. ATHENA: An ontology-driven system
                                                                  for natural language querying over relational data stores.
            Data used in this study can be found at: https://github.  Proc VLDB Endow. 2016;9(12):1209-1220.
            com/wangpinggl/TREQS/tree/master/mimicsql_data/
            mimicsql_natural_v2                                   doi: 10.14778/2994509.2994536
                                                               11.  Choi DH, Shin MC, Kim EG, Shin DR. RYANSQL:
            References                                            Recursively applying sketch-based slot fillings for complex
                                                                  text-to-SQL in cross-domain databases. Comput Linguistics.
            1.   Deng N, Chen Y, Zhang Y. Recent Advances in Text-to-
               SQL: A  Survey of What We Have and What We Expect.   2021;47(2):309-332.
               In:  Proceedings  of the  29   International  Conference on      doi: 10.1162/coli_a_00403
                                   th
               Computational Linguistics, Gyeongju, Republic of Korea.   12.  Wang B, Shin R, Liu X, Polozov O, Richardson M. RAT-SQL:
               International Committee on Computational Linguistics; 2022.   Relation-Aware  Schema  Encoding  and Linking for  Text-
               p. 2166-2187.
                                                                  to-SQL Parsers. In: Proceedings of the 58  Annual Meeting
                                                                                                th
            2.   Katsogiannis-Meimarakis G, Koutrika G. A  survey on   of the Association for Computational Linguistics. United
               deep learning approaches for text-to-SQL.  VLDB  J.   States:  Association  for  Computational  Linguistics;  2020.
               2023;32:905-936.                                   p. 7567-7578.
               doi: 10.1007/s00778-022-00776-8                    doi: 10.18653/v1/2020.acl-main.677
            3.   Wang P, Shi T, Reddy CK. Text-to-SQL Generation for   13.  Cao R, Chen L, Chen Z, Zhao Y, Zhu S, Yu K. LGESQL: Line
               Question Answering on Electronic Medical Records. In:   Graph Enhanced Text-to-SQL Model with Mixed Local
                                                                                                       th
               Proceedings of the Web Conference 2020  (WWW ‘20).   and Non-Local Relations. In: Proceedings of the 59  Annual
               New York, NY, USA: Association for Computing Machinery.   Meeting of the Association for Computational Linguistics and
               p. 350-361.                                        the 11  International Joint Conference on Natural Language
                                                                       th
                                                                  Processing. Vol. 1 (Long Papers); 2021. p. 2541-2555.
               doi: 10.1145/3366423.3380120
                                                                  doi: 10.18653/v1/2021.acl-long.198
            4.   Codd EF. A relational model of data for large shared data
               banks. Commun ACM. 1970;13(6):377-387.          14.  Raffel C, Shazeer N, Roberts A, et al. Exploring the limits
                                                                  of transfer learning with a unified text-to-text transformer.
               doi: 10.1145/362384.362685
                                                                  J Mach Learn Res. 2020;21(1):5485-5551.
            5.   Hemphill CT, Godfrey JJ, Doddington GR. The ATIS Spoken
               Language Systems Pilot Corpus. In:  Speech and Natural      doi: 10.48550/arXiv.1910.10683
               Language: Proceedings of a Workshop Held at Hidden Valley,   15.  Scholak T, Schucher N, Bahdanau D. PICARD: Parsing
               Pennsylvania; 1990.                                Incrementally for Constrained Auto-Regressive Decoding
                                                                  from Language Models. In:  Proceedings  of the 2021
            6.   Dahl DA, Bates M, Brown M, et al. Expanding the Scope
               of the ATIS Task: The ATIS-3 Corpus. In: Human Language   Conference on Empirical Methods in Natural Language
               Technology: Proceedings of a Workshop Held at Plainsboro,   Processing.  Punta  Cana,  Dominican  Republic.  Association
               New Jersey; 1994.                                  for Computational Linguistics; 2021. p. 9895-9901.
                                                                  doi: 10.18653/v1/2021.emnlp-main.779 8111035487
            7.   Zelle JM, Mooney RJ. Learning to Parse Database Queries
               Using  Inductive  Logic  Programming.  In: Proceedings of   16.  Li H,  Zhang  J, Li C, Chen H. RESDSQL:  Decoupling
               the National Conference on Artificial Intelligence; 1996.   Schema Linking and Skeleton Parsing for Text-to-SQL.
               p. 1050-1055.                                      In:  Proceedings of the Thirty-Seventh AAAI Conference


            Volume 1 Issue 2 (2024)                        105                               doi: 10.36922/aih.2661
   106   107   108   109   110   111   112   113   114   115   116