Page 111 - AIH-1-2
P. 111
Artificial Intelligence in Health Schema-less text2sql conversion with LLMs
Methodology: Youssef Mellah, Veysel Kocaman 8. Popescu AM, Etzioni O, Kautz H. Towards a Theory of
Formal analysis: Youssef Mellah, Veysel Kocaman, Hasham Natural Language Interfaces to Databases. In: Proceedings of
th
UI Haq the 8 International Conference on Intelligent user Interfaces
Writing – original draft: Youssef Mellah, Veysel Kocaman, (IUI ‘03). New York, NY, USA: Association for Computing
Hasham UI Haq Machinery; 2003. p. 149-157.
Writing – review & editing: Veysel Kocaman, David Talby doi: 10.1145/604045.604070
Ethics approval and consent to participate 9. Bertomeu N, Uszkoreit H, Frank A, Krieger HU, Jörg B.
Contextual Phenomena and Thematic Relations in Database
Not applicable. QA Dialogues: Results from a Wizard-of-Oz experiment. In:
Proceedings of the Interactive Question Answering Workshop
Consent for publication at HLT-NAACL. New York, NY, USA: Association for
Computational Linguistics; 2006. p. 1-8.
Not applicable.
10. Saha D, Floratou A, Sankaranarayanan K, Minhas UF,
Availability of data Mittal AR, Özcan F. ATHENA: An ontology-driven system
for natural language querying over relational data stores.
Data used in this study can be found at: https://github. Proc VLDB Endow. 2016;9(12):1209-1220.
com/wangpinggl/TREQS/tree/master/mimicsql_data/
mimicsql_natural_v2 doi: 10.14778/2994509.2994536
11. Choi DH, Shin MC, Kim EG, Shin DR. RYANSQL:
References Recursively applying sketch-based slot fillings for complex
text-to-SQL in cross-domain databases. Comput Linguistics.
1. Deng N, Chen Y, Zhang Y. Recent Advances in Text-to-
SQL: A Survey of What We Have and What We Expect. 2021;47(2):309-332.
In: Proceedings of the 29 International Conference on doi: 10.1162/coli_a_00403
th
Computational Linguistics, Gyeongju, Republic of Korea. 12. Wang B, Shin R, Liu X, Polozov O, Richardson M. RAT-SQL:
International Committee on Computational Linguistics; 2022. Relation-Aware Schema Encoding and Linking for Text-
p. 2166-2187.
to-SQL Parsers. In: Proceedings of the 58 Annual Meeting
th
2. Katsogiannis-Meimarakis G, Koutrika G. A survey on of the Association for Computational Linguistics. United
deep learning approaches for text-to-SQL. VLDB J. States: Association for Computational Linguistics; 2020.
2023;32:905-936. p. 7567-7578.
doi: 10.1007/s00778-022-00776-8 doi: 10.18653/v1/2020.acl-main.677
3. Wang P, Shi T, Reddy CK. Text-to-SQL Generation for 13. Cao R, Chen L, Chen Z, Zhao Y, Zhu S, Yu K. LGESQL: Line
Question Answering on Electronic Medical Records. In: Graph Enhanced Text-to-SQL Model with Mixed Local
th
Proceedings of the Web Conference 2020 (WWW ‘20). and Non-Local Relations. In: Proceedings of the 59 Annual
New York, NY, USA: Association for Computing Machinery. Meeting of the Association for Computational Linguistics and
p. 350-361. the 11 International Joint Conference on Natural Language
th
Processing. Vol. 1 (Long Papers); 2021. p. 2541-2555.
doi: 10.1145/3366423.3380120
doi: 10.18653/v1/2021.acl-long.198
4. Codd EF. A relational model of data for large shared data
banks. Commun ACM. 1970;13(6):377-387. 14. Raffel C, Shazeer N, Roberts A, et al. Exploring the limits
of transfer learning with a unified text-to-text transformer.
doi: 10.1145/362384.362685
J Mach Learn Res. 2020;21(1):5485-5551.
5. Hemphill CT, Godfrey JJ, Doddington GR. The ATIS Spoken
Language Systems Pilot Corpus. In: Speech and Natural doi: 10.48550/arXiv.1910.10683
Language: Proceedings of a Workshop Held at Hidden Valley, 15. Scholak T, Schucher N, Bahdanau D. PICARD: Parsing
Pennsylvania; 1990. Incrementally for Constrained Auto-Regressive Decoding
from Language Models. In: Proceedings of the 2021
6. Dahl DA, Bates M, Brown M, et al. Expanding the Scope
of the ATIS Task: The ATIS-3 Corpus. In: Human Language Conference on Empirical Methods in Natural Language
Technology: Proceedings of a Workshop Held at Plainsboro, Processing. Punta Cana, Dominican Republic. Association
New Jersey; 1994. for Computational Linguistics; 2021. p. 9895-9901.
doi: 10.18653/v1/2021.emnlp-main.779 8111035487
7. Zelle JM, Mooney RJ. Learning to Parse Database Queries
Using Inductive Logic Programming. In: Proceedings of 16. Li H, Zhang J, Li C, Chen H. RESDSQL: Decoupling
the National Conference on Artificial Intelligence; 1996. Schema Linking and Skeleton Parsing for Text-to-SQL.
p. 1050-1055. In: Proceedings of the Thirty-Seventh AAAI Conference
Volume 1 Issue 2 (2024) 105 doi: 10.36922/aih.2661

