Page 71 - AIH-1-2
P. 71

Artificial Intelligence in Health                                       AI in AD – Diagnosis and monitoring



               PH2-A Dermoscopic Image Database for Research and   2018;138(10):2277-2279.
                                  th
               Benchmarking. In: 2013 35  Annual International Conference      doi: 10.1016/j.jid.2018.04.040
               IEEE Engineering Medical Biology Society (EMBC). United
               States: IEEE; 2013. p. 5437-5440.               104. Hogarty DT, Mackey DA, Hewitt AW. Current state and
                                                                  future prospects of artificial intelligence in ophthalmology:
               doi: 10.1109/embc.2013.6610779                     A review. Clin Exp Ophthalmol. 2019;47(1):128-139.
            100. Ioffe S, Szegedy C. Batch Normalization: Accelerating deep      doi: 10.1111/ceo.13381
               Network Training by Reducing Internal Covariate Shift. In:
               International Conference on Machine Learning; 2015. p. 448-  105. Angus DC. Randomized clinical trials of  artificial
               456. Available from: http://arxiv.org/abs/1502.03167  [Last   intelligence. JAMA. 2020;323(11):1043.
               accessed on 2024 Jan 10].                          doi: 10.1001/jama.2020.1039
            101. Lemley J, Bazrafkan S, Corcoran P. Smart augmentation-  106. Matheny ME, Whicher D, Thadaney Israni S. Artificial
               learning  an optimal data  augmentation strategy.  IEEE   intelligence in health care.  A  report from the national
               Access. 2017;5:5858-5869.                          academy of medicine. JAMA. 2020;323(6):509-510.
            102. Han SS, Lim W, Kim MS, Park I, Park GH, Chang SE.      doi: 10.1001/jama.2019.21579
               Interpretation of the outputs of a deep learning model   107. Bergl PA, Wijesekera TP, Nassery N, Cosby KS. Controversies
               trained with a skin cancer dataset.  J  Invest Dermatol.   in diagnosis: Contemporary debates in the diagnostic safety
               2018;138(10):2275-2277.                            literature. Diagnosis (Berl). 2020;7(1):3-9.
               doi: 10.1016/j.jid.2018.05.014                     doi: 10.1515/dx-2019-0016
            103. Navarrete-Dechent  C,  Dusza  SW,  Liopyris  K,  108. Ferrante G, Licari A, Marseglia GL, La Grutta S. Artificial
               Marghoob AA, Halpern AC, Marchetti MA. Automated   intelligence as an emerging diagnostic approach in paediatric
               dermatological diagnosis: Hype or reality? J Invest Dermatol.   pulmonology. Respirology. 2020;25(10):1029-1030.















































            Volume 1 Issue 2 (2024)                         65                               doi: 10.36922/aih.2775
   66   67   68   69   70   71   72   73   74   75   76