Page 41 - ARNM-2-3
P. 41

Advances in Radiotherapy
            & Nuclear Medicine                                                        Molecular imaging of lung cancer



               Cancer Imaging. 2023;23(1):17.                     doi: 10.1016/j.annonc.2022.01.008
               doi: 10.1186/s40644-023-00531-4                 41.  Zheng S, Guo J, Cui X, Veldhuis RN, Oudkerk M, Van
                                                                  Ooijen PM. Automatic pulmonary nodule detection in
            30.  Caravan P, Yang Y, Zachariah R, et al. Molecular magnetic
               resonance imaging of pulmonary fibrosis in mice.  Am J   CT scans using convolutional neural networks based on
               Respir Cell Mol Biol. 2013;49(6):1120-1126.        maximum intensity projection.  IEEE Trans Med Imaging.
                                                                  2019;39(3):797-805.
               doi: 10.1165/rcmb.2013-0039OC
                                                                  doi: 10.1109/TMI.2019.2935553
            31.  Ibhagui OY, Li D, Han H, et al. Early detection and staging
               of lung fibrosis enabled by collagen-targeted MRI protein   42.  Tian P, He B, Mu W, et al. Assessing PD-L1 expression in non-
               contrast agent. Chem Biomed Imaging. 2023;1(3):268-285.  small cell lung cancer and predicting responses to immune
                                                                  checkpoint inhibitors using deep learning on computed
               doi: 10.1021/cbmi.3c00023                          tomography images. Theranostics. 2021;11(5):2098.
            32.  Waghorn PA, Jones CM, Rotile NJ, et al. Molecular magnetic      doi: 10.7150/thno.48027
               resonance imaging of lung fibrogenesis with an oxyamine‐
               based probe. Angew Chem Int Ed. 2017;56(33):9825-9828.  43.  Chaunzwa TL, Hosny A, Xu Y,  et al. Deep learning
                                                                  classification of lung cancer histology using CT images. Sci
               doi: 10.1002/anie.201704773                        Rep. 2021;11(1):5471.
            33.  Akam EA, Abston E, Rotile NJ, et al. Improving the reactivity      doi: 10.1038/s41598-021-84630-x
               of hydrazine-bearing MRI probes for in vivo imaging of lung
               fibrogenesis. Chem Sci. 2020;11(1):224-231.     44.  Bhattacharjee A, Rabea S, Bhattacharjee A, et al. A multi-
                                                                  class deep learning model for early lung cancer and chronic
               doi: 10.1039/c9sc04821a                            kidney disease detection using computed tomography
            34.  Ma H, Zhou IY, Chen YI, et al. Tailored chemical reactivity   images. Front Oncol. 2023;13:1193746.
               probes for systemic imaging of aldehydes in fibroproliferative      doi: 10.3389/fonc.2023.1193746
               diseases. J Am Chem Soc. 2023;145(38):20825-20836.
                                                               45.  Kirsch DG, Grimm J, Guimaraes AR, et al. Imaging primary
               doi: 10.1021/jacs.3c04964                          lung cancers in mice to study radiation biology. Int J Radiat
            35.  Mazonakis M, Damilakis J. Computed tomography: What   Oncol Biol Phys. 2010;76(4):973-977.
               and how does it measure? Eur J Radiol. 2016;85(8):1499-1504.     doi: 10.1016/j.ijrobp.2009.11.038
            36.  Mitsiopoulos N, Baumgartner RN, Heymsfield SB,   46.  Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK,
               Lyons   W, Gallagher D, Ross R. Cadaver validation of   Duda DG. Recruitment of myeloid but not endothelial
               skeletal muscle measurement by magnetic resonance   precursor cells facilitates tumor regrowth after local
               imaging  and  computerized  tomography.  J  Appl Physiol   irradiation. Cancer Res. 2010;70(14):5679-5685.
               (1985). 1998;85(1):115-122.
                                                                  doi: 10.1158/0008-5472.CAN-09-4446
               doi: 10.1152/jappl.1998.85.1.115
                                                               47.  Krupnick AS, Tidwell VK, Engelbach JA, et al. Quantitative
            37.  Zhao Y, Wang R, Shi F, Wu J, Jiang F, Song Q. Diagnostic   monitoring of mouse lung tumors by magnetic resonance
               efficacy of CT examination on early detection of lung   imaging. Nat Protoc. 2012;7(1):128-142.
               cancer during pandemic of COVID-19. Diagnostics (Basel).
               2022;12(10):2317.                                  doi: 10.1038/nprot.2011.424
               doi: 10.3390/diagnostics12102317                48.  Lell MM, Wildberger JE, Alkadhi H, Damilakis J,
                                                                  Kachelriess   M. Evolution in computed tomography: The
            38.  De Clerck NM, Meurrens K, Weiler H, et al. High-resolution   battle for speed and dose. Invest Radiol. 2015;50(9):629-644.
               X-ray microtomography for the detection of lung tumors in
               living mice. Neoplasia. 2004;6(4):374-379.         doi: 10.1097/RLI.0000000000000172
               doi: 10.1593/neo.03481                          49.  Wu Y, Li P, Zhang H, et al. Diagnostic value of fluorine  18
                                                                  fluorodeoxyglucose  positron  emission  tomography/
            39.  Kalinke L, Thakrar R, Janes SM. The promises and   computed tomography for the detection of metastases
               challenges of early non‐small cell lung cancer detection:   in non-small-cell lung cancer patients.  Int J Cancer.
               Patient perceptions, low‐dose CT screening, bronchoscopy   2013;132(2):E37-E47.
               and biomarkers. Mol Oncol. 2021;15(10):2544-2564.
                                                                  doi: 10.1002/ijc.27779
               doi: 10.1002/1878-0261.12864
                                                               50.  Vansteenkiste JF, Stroobants SS. PET scan in lung cancer:
            40.  Pastorino U, Boeri M, Sestini S,  et  al. Baseline computed
               tomography screening and blood microRNA predict lung   Current recommendations and innovation. J Thorac Oncol.
               cancer risk and define adequate intervals in the BioMILD   2006;1:71-73.
               trial. Ann Oncol. 2022;33(4):395-405.           51.  Acker M. Utility of FDG PET in evaluating cancers of lung.


            Volume 2 Issue 3 (2024)                         9                              doi: 10.36922/arnm.4173
   36   37   38   39   40   41   42   43   44   45   46