Page 41 - ARNM-2-3
P. 41
Advances in Radiotherapy
& Nuclear Medicine Molecular imaging of lung cancer
Cancer Imaging. 2023;23(1):17. doi: 10.1016/j.annonc.2022.01.008
doi: 10.1186/s40644-023-00531-4 41. Zheng S, Guo J, Cui X, Veldhuis RN, Oudkerk M, Van
Ooijen PM. Automatic pulmonary nodule detection in
30. Caravan P, Yang Y, Zachariah R, et al. Molecular magnetic
resonance imaging of pulmonary fibrosis in mice. Am J CT scans using convolutional neural networks based on
Respir Cell Mol Biol. 2013;49(6):1120-1126. maximum intensity projection. IEEE Trans Med Imaging.
2019;39(3):797-805.
doi: 10.1165/rcmb.2013-0039OC
doi: 10.1109/TMI.2019.2935553
31. Ibhagui OY, Li D, Han H, et al. Early detection and staging
of lung fibrosis enabled by collagen-targeted MRI protein 42. Tian P, He B, Mu W, et al. Assessing PD-L1 expression in non-
contrast agent. Chem Biomed Imaging. 2023;1(3):268-285. small cell lung cancer and predicting responses to immune
checkpoint inhibitors using deep learning on computed
doi: 10.1021/cbmi.3c00023 tomography images. Theranostics. 2021;11(5):2098.
32. Waghorn PA, Jones CM, Rotile NJ, et al. Molecular magnetic doi: 10.7150/thno.48027
resonance imaging of lung fibrogenesis with an oxyamine‐
based probe. Angew Chem Int Ed. 2017;56(33):9825-9828. 43. Chaunzwa TL, Hosny A, Xu Y, et al. Deep learning
classification of lung cancer histology using CT images. Sci
doi: 10.1002/anie.201704773 Rep. 2021;11(1):5471.
33. Akam EA, Abston E, Rotile NJ, et al. Improving the reactivity doi: 10.1038/s41598-021-84630-x
of hydrazine-bearing MRI probes for in vivo imaging of lung
fibrogenesis. Chem Sci. 2020;11(1):224-231. 44. Bhattacharjee A, Rabea S, Bhattacharjee A, et al. A multi-
class deep learning model for early lung cancer and chronic
doi: 10.1039/c9sc04821a kidney disease detection using computed tomography
34. Ma H, Zhou IY, Chen YI, et al. Tailored chemical reactivity images. Front Oncol. 2023;13:1193746.
probes for systemic imaging of aldehydes in fibroproliferative doi: 10.3389/fonc.2023.1193746
diseases. J Am Chem Soc. 2023;145(38):20825-20836.
45. Kirsch DG, Grimm J, Guimaraes AR, et al. Imaging primary
doi: 10.1021/jacs.3c04964 lung cancers in mice to study radiation biology. Int J Radiat
35. Mazonakis M, Damilakis J. Computed tomography: What Oncol Biol Phys. 2010;76(4):973-977.
and how does it measure? Eur J Radiol. 2016;85(8):1499-1504. doi: 10.1016/j.ijrobp.2009.11.038
36. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, 46. Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK,
Lyons W, Gallagher D, Ross R. Cadaver validation of Duda DG. Recruitment of myeloid but not endothelial
skeletal muscle measurement by magnetic resonance precursor cells facilitates tumor regrowth after local
imaging and computerized tomography. J Appl Physiol irradiation. Cancer Res. 2010;70(14):5679-5685.
(1985). 1998;85(1):115-122.
doi: 10.1158/0008-5472.CAN-09-4446
doi: 10.1152/jappl.1998.85.1.115
47. Krupnick AS, Tidwell VK, Engelbach JA, et al. Quantitative
37. Zhao Y, Wang R, Shi F, Wu J, Jiang F, Song Q. Diagnostic monitoring of mouse lung tumors by magnetic resonance
efficacy of CT examination on early detection of lung imaging. Nat Protoc. 2012;7(1):128-142.
cancer during pandemic of COVID-19. Diagnostics (Basel).
2022;12(10):2317. doi: 10.1038/nprot.2011.424
doi: 10.3390/diagnostics12102317 48. Lell MM, Wildberger JE, Alkadhi H, Damilakis J,
Kachelriess M. Evolution in computed tomography: The
38. De Clerck NM, Meurrens K, Weiler H, et al. High-resolution battle for speed and dose. Invest Radiol. 2015;50(9):629-644.
X-ray microtomography for the detection of lung tumors in
living mice. Neoplasia. 2004;6(4):374-379. doi: 10.1097/RLI.0000000000000172
doi: 10.1593/neo.03481 49. Wu Y, Li P, Zhang H, et al. Diagnostic value of fluorine 18
fluorodeoxyglucose positron emission tomography/
39. Kalinke L, Thakrar R, Janes SM. The promises and computed tomography for the detection of metastases
challenges of early non‐small cell lung cancer detection: in non-small-cell lung cancer patients. Int J Cancer.
Patient perceptions, low‐dose CT screening, bronchoscopy 2013;132(2):E37-E47.
and biomarkers. Mol Oncol. 2021;15(10):2544-2564.
doi: 10.1002/ijc.27779
doi: 10.1002/1878-0261.12864
50. Vansteenkiste JF, Stroobants SS. PET scan in lung cancer:
40. Pastorino U, Boeri M, Sestini S, et al. Baseline computed
tomography screening and blood microRNA predict lung Current recommendations and innovation. J Thorac Oncol.
cancer risk and define adequate intervals in the BioMILD 2006;1:71-73.
trial. Ann Oncol. 2022;33(4):395-405. 51. Acker M. Utility of FDG PET in evaluating cancers of lung.
Volume 2 Issue 3 (2024) 9 doi: 10.36922/arnm.4173

