Page 62 - GPD-1-2
P. 62

Gene & Protein in Disease                                                         circRNAs and cancer



               pancreatic ductal adenocarcinoma. J Oncol, 2019: 7630894.   Cancer, 18(1): 13.
               https://doi.org/10.1155/2019/7630894               https://doi.org/10.1186/s12943-019-0943-0

            78.  Yao J, Zhang C, Chen Y,  et al., 2019, Downregulation of   88.  Li X, Zhang Z, Jiang H, et al., 2018, Circular RNA circPVT1
               circular RNA circ-LDLRAD3 suppresses pancreatic cancer   promotes proliferation and invasion through sponging miR-
               progression through  miR-137-3p/PTN axis.  Life Sci,   125b and activating E2F2 signaling in non-small cell lung
               239: 116871.                                       cancer. Cell Physiol Biochem, 51(5): 2324–2340.
               https://doi.org/10.1016/j.lfs.2019.116871          https://doi.org/10.1159/000495876
            79.  Chen YY, Jiang MJ, Tian L, 2020, Analysis of exosomal   89.  Qin S, Zhao Y, Lim G,  et al., 2019, Circular RNA PVT1
               circRNAs upon irradiation in pancreatic cancer cell   acts  as  a competing  endogenous  RNA  for miR-497 in
               repopulation. BMC Med Genomics, 13(1): 107.        promoting non-small cell lung cancer progression. Biomed
                                                                  Pharmacother, 111: 244–250.
               https://doi.org/10.1186/s12920-020-00756-3
                                                                  https://doi.org/10.1016/j.biopha.2018.12.007
            80.  Guo X, Zhou Q, Su D,  et al., 2020, Circular RNA
               circBFAR promotes the progression of pancreatic ductal   90.  Zong L, Sun Q, Zhang H, et al., 2018, Increased expression of
               adenocarcinoma  via  the  miR-34b-5p/MET/Akt  axis.  Mol   circRNA_102231 in lung cancer and its clinical significance.
               Cancer, 19(1): 83.                                 Biomed Pharmacother, 102: 639–644.
               https://doi.org/10.1186/s12943-020-01196-4         https://doi.org/10.1016/j.biopha.2018.03.084
            81.  Wong CH, Lou UK, Li Y, et al., 2020, CircFOXK2 promotes   91.  Hang D, Zhou J, Qin N, et al., 2018, A novel plasma circular
               growth and metastasis of pancreatic ductal adenocarcinoma   RNA circFARSA is a potential biomarker for non-small cell
               by complexing with RNA-binding proteins and sponging   lung cancer. Cancer Med, 7(6): 2783–2791.
               MiR-942. Cancer Res, 80(11): 2138–2149.            https://doi.org/10.1002/cam4.1514
               https://doi.org/10.1158/0008-5472.CAN-19-3268   92.  Huang EY, Chang YJ, Huang SP,  et al., 2018, A common
            82.  Zhang X, Yang D, Wei Y, 2018, Overexpressed CDR1as   regulatory variant in SLC35B4 influences the recurrence
               functions as an oncogene to promote the tumor progression   and survival of prostate cancer.  J  Cell Mol Med, 22(7):
               via miR-7 in non-small-cell lung cancer. Onco Targets Ther,   3661–3670.
               11: 3979–3987.                                     https://doi.org/10.1111/jcmm.13649
               https://doi.org/10.2147/OTT.S158316             93.  Xia Q, Ding T, Zhang G, et al., 2018, Circular RNA expression
                                                                  profiling identifies prostate cancer-specific circRNAs in
            83.  Wang X, Zhu X, Zhang H, et al., 2018, Increased circular
               RNA hsa_circ_0012673 acts as a sponge of miR-22 to   prostate cancer. Cell Physiol Biochem, 50(5): 1903–1915.
               promote lung adenocarcinoma proliferation.  Biochem      https://doi.org/10.1159/000494870
               Biophys Res Commun, 496(4): 1069–1075.          94.  Greene J, Baird AM, Casey O, et al., 2019, Circular RNAs
               https://doi.org/10.1016/j.bbrc.2018.01.126         are differentially expressed in prostate cancer and are
                                                                  potentially associated with resistance to enzalutamide. Sci
            84.  Qu D, Yan B, Xin R,  et al., 2018, A novel circular RNA   Rep, 9(1): 10739.
               hsa_circ_0020123  exerts  oncogenic properties  through
               suppression of miR-144 in non-small cell lung cancer. Am J      https://doi.org/10.1038/s41598-019-47189-2
               Cancer Res, 8(8): 1387–1402.                    95.  Kong Z, Wan X, Lu Y, et al., 2020, Circular RNA circFOXO3
            85.  Xue YB, Ding MQ, Xue L, et al., 2019, CircAGFG1 sponges   promotes  prostate  cancer  progression  through  sponging
               miR-203 to promote EMT and metastasis of non-small-cell   miR-29a-3p. J Cell Mol Med, 24(1): 799–813.
               lung cancer by upregulating ZNF281 expression.  Thorac      https://doi.org/10.1111/jcmm.14791
               Cancer, 10(8): 1692–1701.
                                                               96.  Wu YP, Lin XD, Chen SH,  et al., 2020, Identification of
               https://doi.org/10.1111/1759-7714.13131            prostate cancer-related circular RNA through bioinformatics
            86.  Shangguan  H, Feng  H, Lv  D,  et al., 2020,  Circular RNA   analysis. Front Genet, 11: 892.
               circSLC25A16 contributes to the glycolysis of non-small-     https://doi.org/10.3389/fgene.2020.00892
               cell lung cancer through epigenetic modification. Cell Death
               Dis, 11(6): 437.                                97.  Ge S, Sun C, Hu Q,  et al., 2020, Differential expression
                                                                  profiles of circRNAs in human prostate cancer based on
               https://doi.org/10.1038/s41419-020-2635-5          chip and bioinformatic analysis.  Int J Clin Exp Pathol,
            87.  Chen L, Nan A, Zhang N, et al., 2019, Circular RNA 100146   13(5): 1045–1052.
               functions as an oncogene through direct binding to miR-  98.  Cai C, Zhi Y, Wang K, et al., 2019, CircHIPK3 overexpression
               361-3p and miR-615-5p in non-small cell lung cancer. Mol   accelerates the proliferation and invasion of prostate cancer


            Volume 1 Issue 2 (2022)                         15                     https://doi.org/10.36922/gpd.v1i2.138
   57   58   59   60   61   62   63   64   65   66   67