Page 18 - GTM-4-1
P. 18
Global Translational Medicine Advancements in cardiac regenerative therapy
Author contributions doi: 10.1038/nprot.2013.114
Conceptualization: Tadahisa Sugiura 9. Hasan A, Mohammadi N, Nawaz A, et al. Age-dependent
Writing – original draft: Dhienda C. Shahannaz maturation of IPSC-CMs leads to the enhanced
Writing – review & editing: Tadahisa Sugiura, Brandon E. compartmentation of Β2AR-CAMP signalling. Cells.
2020;9(10):2275.
Ferrel, Taizo Yoshida
doi: 10.3390/cells9102275
Ethics approval and consent to participate 10. Grunert M, Dorn C, Rickert-Sperling S. Cardiac
Not applicable. transcription factors and regulatory networks. Adv Exp Med
Biol. 2024;1441:295-311.
Consent for publication doi: 10.1007/978-3-031-44087-8_16
Not applicable. 11. Robbe ZL, Shi W, Wasson LK, et al. CHD4 is recruited by
GATA4 and NKX2-5 to repress noncardiac gene programs
Availability of data in the developing heart. Genes Dev. 2022;36(7-8):468-482.
Not applicable. doi: 10.1101/gad.349154.121
References 12. Morris SA, Daley GQ. A blueprint for engineering cell fate:
Current technologies to reprogram cell identity. Cell Res.
1. Kasai-Brunswick TH, Carvalho AB, De Carvalho ACC. 2013;23:33-48.
Cardiac stem cells: Fact or fiction? In: Resident Stem Cells doi: 10.1038/cr.2013.1
and Regenerative Therapy. Amsterdam, Netherlands:
Elsevier; 2023. p. 5-21. 13. Correia CD, Ferreira A, Fernandes MT, et al. Human Stem
cells for cardiac disease modeling and preclinical and
doi: 10.1016/b978-0-443-15289-4.00006-8 clinical applications-are we on the road to success? Cells.
2. Beisaw A, Wu C. Cardiomyocyte maturation and its reversal 2023;12:1727.
during cardiac regeneration. Dev Dyn. 2022;253(1):8-27. doi: 10.3390/cells12131727
doi: 10.1002/dvdy.557 14. Eglen RM, Reisine T. Human IPS Cell-derived patient
3. Sugiura T, Shahannaz DC, Ferrell BE. Current status of tissues and 3D cell culture part 1: Target identification and
cardiac regenerative therapy using induced pluripotent stem lead optimization. SLAS Technol. 2018;24(1):3-17.
cells. Int J Mol Sci. 2024;25(11):5772. doi: 10.1177/2472630318803277
doi: 10.3390/ijms25115772 15. Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N,
4. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence Seifalian AM, Ashtari B. Correction to: Stem cell
for cardiomyocyte renewal in humans. Science. differentiation into cardiomyocytes: Current methods and
2009;324(5923):98-102. emerging approaches. Stem Cell Rev Rep. 2022;18(6):2202.
doi: 10.1126/science.1164680 doi: 10.1007/s12015-022-10395-z
5. Takahashi K, Yamanaka S. Induction of pluripotent stem 16. Clancy CE, Santana LF. Advances in induced pluripotent
cells from mouse embryonic and adult fibroblast cultures by stem cell‐derived cardiac myocytes: Technological
defined factors. Cell. 2006;126(4):663-676. breakthroughs, key discoveries and new applications.
J Physiol. 2024;602(16):3871-3892.
doi: 10.1016/j.cell.2006.07.024
doi: 10.1113/jp282562
6. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of
pluripotent stem cells from adult human fibroblasts by 17. Correia C, Christoffersson J, Tejedor S, et al. Enhancing
defined factors. Cell. 2007;131(5):861-872. maturation and translatability of human pluripotent stem
cell-derived cardiomyocytes through a novel medium
doi: 10.1016/j.cell.2007.11.019 containing acetyl-CoA carboxylase 2 inhibitor. Cells.
7. Mohit G, Mohammed JMS, Akbarsha MA, Rohini G. 2024;13(16):1339.
Cellular reprogramming, transdifferentiation and alleviation doi: 10.3390/cells13161339
of the aging pathology. Res J Biotechnol. 2023;19(2):127-139.
18. Bhattacharya S, Burridge PW, Kropp EM, et al. High
doi: 10.25303/1902rjbt1270139 efficiency differentiation of human pluripotent stem cells
8. Liu Q, Feng W, Yang T, Yi T, Li F. Upconversion to cardiomyocytes and characterization by flow cytometry.
luminescence imaging of cells and small animals. Nat Protoc. J Vis Exp. 2014;91:52010.
2013;8(10):2033-2044. doi: 10.3791/52010
Volume 4 Issue 1 (2025) 10 doi: 10.36922/gtm.5745

