Page 26 - IJB-10-1
P. 26
International Journal of Bioprinting Magnetic (Bio)inks for tissue engineering
59. Bartolo P, Malshe A, Ferraris E, Bahattin K. 3D bioprinting: 71. Ajiteru O, Choi KY, Lim TH, et al. A digital light processing
Materials, processes, and applications. CIRP Ann. 2022;71(2): 3D printed magnetic bioreactor system using silk magnetic
577–597. bioink. Biofabrication. 2021;13(3): 034102.
doi: 10.1016/j.cirp.2022.06.001 doi: 10.1088/1758-5090/abfaee
60. Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M. 72. Mertz D, Harlepp S, Goetz J, et al. Nanocomposite polymer
Magnetic hydrogel for cartilage tissue regeneration as well scaffolds responding under external stimuli for drug delivery
as a review on advantages and disadvantages of different and tissue engineering applications. Adv Ther. 2020;3(2):
cartilage repair strategies. BioMed Res Int.2022;2022: 1–12. 1900143.
doi: 10.1155/2022/7230354 doi: 10.1002/adtp.201900143
61. Han X, Chang S, Zhang M, Bian X, Li C, Li D. Advances of 73. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting
hydrogel-based bioprinting for cartilage tissue engineering. in skeletal muscle tissue engineering. Smal. 2019;15(24):
Front Bioeng Biotechnol. 2021;9: 746564. 1805530.
doi: 10.3389/fbioe.2021.746564
doi: 10.1002/smll.201805530
62. Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck
M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 74. Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue
2018;9: 204173141880209. engineering. Theranostics. 2021;11(16): 7948–7969.
doi: 10.1177/2041731418802090 doi: 10.7150/thno.61621
63. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. 75. Allafchian A, Hosseini SS. Antibacterial magnetic
Chem Rev. 2020;120(19): 10793–10833. nanoparticles for therapeutics: A review. IET Nanobiotechnol.
doi: 10.1021/acs.chemrev.0c00008 2019;13(8): 786–799.
doi: 10.1049/iet-nbt.2019.0146
64. Spangenberg J, Kilian D, Czichy C, et al. Bioprinting of
magnetically deformable scaffolds. ACS Biomater Sci Eng. 76. Franco D, Calabrese G, Guglielmino SPP, Conoci S.
2021;7(2): 648–662. Metal-based nanoparticles: Antibacterial mechanisms and
doi: 10.1021/acsbiomaterials.0c01371 biomedical application. Microorganisms.2022;10(9): 1778.
doi: 10.3390/microorganisms10091778
65. Kabir W, Di Bella C, Choong PFM, O’Connell CD.
Assessment of native human articular cartilage: A 77. Xu C, Akakuru OU, Zheng J, et al. Applications of iron
biomechanical protocol. Cartilage. 2021;13(2_suppl): oxide-based magnetic nanoparticles in the diagnosis and
427S–437S. treatment of bacterial infections. Front Bioeng Biotechnol.
doi: 10.1177/1947603520973240 2019;7: 141.
doi: 10.3389/fbioe.2019.00141
66. Chang S, Wang S, Liu Z, Wang X. Advances of stimulus-
responsive hydrogels for bone defects repair in tissue 78. Lee Y, Song WJ, Sun J-Y. Hydrogel soft robotics. Mater Today
engineering. Gels. 2022;8(6): 389. Phys. 2020;15: 100258.
doi: 10.3390/gels8060389 doi: 10.1016/j.mtphys.2020.100258
67. Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues 79. Janarthanan G, Noh I. Overview of Injectable Hydrogels
RMA, Gomes ME. Magnetic nanocomposite hydrogels for for 3D Bioprinting and Tissue Regeneration in Injectable
tissue engineering: Design concepts and remote actuation Hydrogels for 3D Bioprinting, ed I, The Royal Society of
strategies to control cell fate. ACS Nano. 2021;15(1): Chemistry. 2021;1–20.
175–209. doi: 10.1039/9781839163975-00001
doi: 10.1021/acsnano.0c08253
80. Devi VKA, Shyam R, Palaniappan A, Jaiswal AK, Oh
68. Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D T-H, Nathanael AJ. Self-healing hydrogels: Preparation,
bioprinted scaffolds for bone tissue engineering: State-of- mechanism and advancement in biomedical applications.
the-art and emerging technologies. Front Bioeng Biotechnol. Polymers. 2021;13(21): 3782.
2022;10: 824156. doi: 10.3390/polym13213782
doi: 10.3389/fbioe.2022.824156
81. Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj
69. Jana S, Levengood SKL, Zhang M. Anisotropic materials for J. Different schiff bases — structure, importance and
skeletal-muscle-tissue engineering. Adv Mater. 2016;28(48): classification. Molecules. 2022;27(3): 787.
10588–10612. doi: 10.3390/molecules27030787
doi: 10.1002/adma.201600240
82. Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D
70. Hwangbo H, Lee H, Jin E-J, et al. Bio-printing of aligned printable and injectable lactoferrin-loaded carboxymethyl
GelMa-based cell-laden structure for muscle tissue cellulose-glycol chitosan hydrogels for tissue engineering
regeneration. Bioact Mater. 2022;8: 57–70. applications. Mater Sci Eng C. 2020;113: 111008.
doi: 10.1016/j.bioactmat.2021.06.031 doi: 10.1016/j.msec.2020.111008
Volume 10 Issue 1 (2024) 18 https://doi.org/10.36922/ijb.0965

