Page 26 - IJB-10-1
P. 26

International Journal of Bioprinting                                Magnetic (Bio)inks for tissue engineering




            59.  Bartolo P, Malshe A, Ferraris E, Bahattin K. 3D bioprinting:   71.  Ajiteru O, Choi KY, Lim TH, et al. A digital light processing
               Materials, processes, and applications. CIRP Ann. 2022;71(2):   3D printed magnetic bioreactor system using silk magnetic
               577–597.                                           bioink. Biofabrication. 2021;13(3): 034102.
               doi: 10.1016/j.cirp.2022.06.001                    doi: 10.1088/1758-5090/abfaee
            60.   Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M.   72.  Mertz D, Harlepp S, Goetz J, et al. Nanocomposite polymer
               Magnetic hydrogel for cartilage tissue regeneration as well   scaffolds responding under external stimuli for drug delivery
               as a review on advantages and disadvantages of different   and tissue engineering applications.  Adv Ther. 2020;3(2):
               cartilage repair strategies. BioMed Res Int.2022;2022: 1–12.  1900143.
               doi: 10.1155/2022/7230354                          doi: 10.1002/adtp.201900143
            61.  Han X, Chang S, Zhang M, Bian X, Li C, Li D. Advances of   73.  Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting
               hydrogel-based bioprinting for cartilage tissue engineering.   in skeletal muscle tissue engineering.  Smal.  2019;15(24):
               Front Bioeng Biotechnol. 2021;9: 746564.           1805530.
               doi: 10.3389/fbioe.2021.746564
                                                                  doi: 10.1002/smll.201805530
            62.  Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck
               M. Bioprinting of tissue engineering scaffolds. J Tissue Eng.   74.  Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue
               2018;9: 204173141880209.                           engineering. Theranostics. 2021;11(16): 7948–7969.
               doi: 10.1177/2041731418802090                      doi: 10.7150/thno.61621
            63.  Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials.   75.  Allafchian A, Hosseini SS. Antibacterial magnetic
               Chem Rev. 2020;120(19): 10793–10833.               nanoparticles for therapeutics: A review. IET Nanobiotechnol.
               doi: 10.1021/acs.chemrev.0c00008                   2019;13(8): 786–799.
                                                                  doi: 10.1049/iet-nbt.2019.0146
            64.  Spangenberg J, Kilian D, Czichy C, et al. Bioprinting of
               magnetically  deformable  scaffolds.  ACS Biomater Sci Eng.   76.  Franco  D,  Calabrese  G,  Guglielmino  SPP,  Conoci  S.
               2021;7(2): 648–662.                                Metal-based nanoparticles: Antibacterial mechanisms and
               doi: 10.1021/acsbiomaterials.0c01371               biomedical application. Microorganisms.2022;10(9): 1778.
                                                                  doi: 10.3390/microorganisms10091778
            65.  Kabir W, Di Bella C, Choong PFM, O’Connell CD.
               Assessment of native human articular cartilage: A   77.  Xu C, Akakuru OU, Zheng J, et al. Applications of iron
               biomechanical protocol.  Cartilage. 2021;13(2_suppl):   oxide-based magnetic nanoparticles in the diagnosis and
               427S–437S.                                         treatment of bacterial infections. Front Bioeng Biotechnol.
               doi: 10.1177/1947603520973240                      2019;7: 141.
                                                                  doi: 10.3389/fbioe.2019.00141
            66.  Chang S, Wang S, Liu Z, Wang X. Advances of stimulus-
               responsive hydrogels for bone defects repair in tissue   78.  Lee Y, Song WJ, Sun J-Y. Hydrogel soft robotics. Mater Today
               engineering. Gels. 2022;8(6): 389.                 Phys. 2020;15: 100258.
               doi: 10.3390/gels8060389                           doi: 10.1016/j.mtphys.2020.100258
            67.  Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues   79.  Janarthanan G, Noh I.  Overview of  Injectable  Hydrogels
               RMA, Gomes ME. Magnetic nanocomposite hydrogels for   for 3D Bioprinting and Tissue Regeneration in Injectable
               tissue engineering: Design concepts and remote actuation   Hydrogels for 3D Bioprinting, ed I, The Royal Society of
               strategies to control cell fate.  ACS Nano. 2021;15(1):    Chemistry. 2021;1–20.
               175–209.                                           doi: 10.1039/9781839163975-00001
               doi: 10.1021/acsnano.0c08253
                                                               80.  Devi VKA, Shyam R, Palaniappan A, Jaiswal AK, Oh
            68.  Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D   T-H, Nathanael AJ. Self-healing hydrogels: Preparation,
               bioprinted scaffolds for bone tissue engineering: State-of-  mechanism and advancement in biomedical applications.
               the-art and emerging technologies. Front Bioeng Biotechnol.   Polymers. 2021;13(21): 3782.
               2022;10: 824156.                                   doi: 10.3390/polym13213782
               doi: 10.3389/fbioe.2022.824156
                                                               81.  Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj
            69.   Jana S, Levengood SKL, Zhang M. Anisotropic materials for   J. Different schiff bases  — structure, importance and
               skeletal-muscle-tissue engineering. Adv Mater. 2016;28(48):   classification. Molecules. 2022;27(3): 787.
               10588–10612.                                       doi: 10.3390/molecules27030787
               doi: 10.1002/adma.201600240
                                                               82.  Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D
            70.  Hwangbo H, Lee H, Jin E-J, et al. Bio-printing of aligned   printable and injectable lactoferrin-loaded carboxymethyl
               GelMa-based cell-laden structure for muscle tissue   cellulose-glycol  chitosan  hydrogels  for  tissue  engineering
               regeneration. Bioact Mater. 2022;8: 57–70.         applications. Mater Sci Eng C. 2020;113: 111008.
               doi: 10.1016/j.bioactmat.2021.06.031               doi:  10.1016/j.msec.2020.111008


            Volume 10 Issue 1 (2024)                        18                         https://doi.org/10.36922/ijb.0965
   21   22   23   24   25   26   27   28   29   30   31