Page 110 - IJB-9-2
P. 110

International Journal of Bioprinting                               Holistic charge-based MEW scaffold model


               topography and mechanical properties for stem cell-based   co-ε-caprolactone-based scaffolds for cardiac tissue
               tissue engineering applications.  J  Biomater Sci Polym Ed,   engineering. Adv Healthc Mater, 6: 1700311.
               25: 1–17.
                                                                  https://doi.org/10.1002/adhm.201700311
               https://doi.org/10.1080/09205063.2013.830913
                                                               21.  Ko J, Mohtaram NK, Lee PC,  et  al., 2015, Mathematical
            11.  Tourlomousis F, Ding H, Kalyon DM,  et al., 2017, Melt   model  for predicting topographical  properties  of poly
               electrospinning writing process guided by a “Printability   (ε-caprolactone) melt electrospun scaffolds including
               Number.” J Manuf Sci Eng Trans ASME, 139: 081004.   the effects of temperature and linear transitional speed.
                                                                  J Micromechanics Microeng, 25: 045018.
               https://doi.org/10.1115/1.4036348
                                                                  https://doi.org/10.1088/0960-1317/25/4/045018
            12.  Dayan CB, Afghah F, Okan BS, et al., 2018, Modeling 3D melt
               electrospinning writing by response surface methodology.   22.  Brooks-Richards TL, Paxton NC, Allenby MC, et al., 2022,
               Mater Des, 148: 87–95.                             Dissolvable 3D printed PVA moulds for melt electrowriting
                                                                  tubular scaffolds with patient-specific geometry. Mater Des,
               https://doi.org/10.1016/j.matdes.2018.03.053
                                                                  215: 110466.
            13.  Tourlomousis F, Jia C, Karydis T,  et al., 2019, Machine
               learning metrology of cell confinement in melt electrowritten      https://doi.org/10.1016/j.matdes.2022.110466
               three-dimensional biomaterial substrates.  Microsystems   23.  Hochleitner G, Jüngst T, Brown TD, et al., 2015, Additive
               Nanoeng, 5: 15.                                    manufacturing of scaffolds with sub-micron filaments via
                                                                  melt electrospinning writing. Biofabrication, 7: 035002.
               https://doi.org/10.1038/s41378-019-0055-4
                                                                  https://doi.org/10.1088/1758-5090/7/3/035002
            14.  Peiffer QC, de Ruijter M, van Duijn J,  et al., 2020, Melt
               electrowriting onto anatomically relevant biodegradable   24.  Hochleitner G, Hümmer JF, Luxenhofer R,  et al., 2014,
               substrates: Resurfacing a diarthrodial joint.  Mater Des,   High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds
               195: 109025.                                       through  melt  electrospinning  writing.  Polymer  (Guildf),
                                                                  55: 5017–5023.
               https://doi.org/10.1016/j.matdes.2020.109025
                                                                  https://doi.org/10.1016/j.polymer.2014.08.024
            15.  Su Y, Zhang Z, Wan Y, et al., 2020, A hierarchically ordered
               compacted coil scaffold for tissue regeneration. NPG Asia   25.  Collins G, Federici J, Imura Y, et al., 2012, Charge generation,
               Mater, 12: 4–13.                                   charge transport, and residual charge in the electrospinning
                                                                  of polymers: A review of issues and complications, J Appl
               https://doi.org/10.1038/s41427-020-0234-7
                                                                  Phys, 111: 044701.
            16.  Jin Y, Gao Q, Xie C, et al., 2020, Fabrication of heterogeneous
               scaffolds using melt electrospinning writing: Design and      https://doi.org/10.1063/1.3682464
               optimization. Mater Des, 185: 108274.           26.  Kim J, Bakirci E, Neill KLO,  et  al., 2021, Fiber bridging
                                                                  during melt electrowriting of poly (ε-Caprolactone) and the
               https://doi.org/10.1016/j.matdes.2019.108274
                                                                  influence of fiber diameter and wall height. Macromol Mater
            17.  Hochleitner  G, Chen  F, Blum  C,  et al., 2018,  Melt   Eng, 306: 2000685.
               electrowriting  below the  critical translation speed to
               fabricate crimped elastomer scaffolds with non-linear      https://doi.org/10.1002/mame.202000685
               extension behaviour mimicking that of ligaments and   27.  Ding H, Cao K, Zhang F, et al., 2019, A fundamental study of
               tendons. Acta Biomater, 72: 110–120.               charge effects on melt electrowritten polymer fibers. Mater
               https://doi.org/10.1016/j.actbio.2018.03.023       Des, 178: 107857.
                                                                  https://doi.org/10.1016/j.matdes.2019.107857
            18.  Bas O, Angella DD, Baldwin JG, et al., 2017, An integrated
               design, material, and fabrication platform for engineering   28.  Wunner FM, Wille M, Noonan TG,  et al., 2018, Melt
               biomechanically and biologically functional soft tissues.   electrospinning  writing  of highly ordered large  volume
               ACS Appl Mater Interfaces, 9: 29430–29437.         scaffold architectures. Adv Mater, 30: 1706570.
               https://doi.org/10.1021/acsami.7b08617             https://doi.org/10.1002/adma.201706570
            19.  Meng J, Boschetto F, Yagi S,  et al., 2021, Design and   29.  He  J,  Hao  G,  Meng  Z,  et al.,  2021,  Expanding  melt-
               manufacturing of 3D high-precision micro-fibrous poly   based electrohydrodynamic printing of highly-ordered
               (L-lactic acid) scaffold using melt electrowriting technique   microfibrous architectures to cm-height via in situ charge
               for bone tissue engineering. Mater Des, 210: 110063.   neutralization. Adv Mater Technol, 7: 2101197.
               https://doi.org/10.1016/j.matdes.2021.110063       https://doi.org/10.1002/admt.202101197
            20.  Castilho M, Feyen D, Flandes-Iparraguirre M, et al., 2017, Melt   30.  Cao K, Zhang F, Zaeri A,  et al., 2022, Quantitative
               electrospinning  writing  of  poly-hydroxymethylglycolide-  investigation into the design and process parametric effects


            Volume 9 Issue 2 (2022)                        102                      https://doi.org/10.18063/ijb.v9i2.656
   105   106   107   108   109   110   111   112   113   114   115