Page 110 - IJB-9-2
P. 110
International Journal of Bioprinting Holistic charge-based MEW scaffold model
topography and mechanical properties for stem cell-based co-ε-caprolactone-based scaffolds for cardiac tissue
tissue engineering applications. J Biomater Sci Polym Ed, engineering. Adv Healthc Mater, 6: 1700311.
25: 1–17.
https://doi.org/10.1002/adhm.201700311
https://doi.org/10.1080/09205063.2013.830913
21. Ko J, Mohtaram NK, Lee PC, et al., 2015, Mathematical
11. Tourlomousis F, Ding H, Kalyon DM, et al., 2017, Melt model for predicting topographical properties of poly
electrospinning writing process guided by a “Printability (ε-caprolactone) melt electrospun scaffolds including
Number.” J Manuf Sci Eng Trans ASME, 139: 081004. the effects of temperature and linear transitional speed.
J Micromechanics Microeng, 25: 045018.
https://doi.org/10.1115/1.4036348
https://doi.org/10.1088/0960-1317/25/4/045018
12. Dayan CB, Afghah F, Okan BS, et al., 2018, Modeling 3D melt
electrospinning writing by response surface methodology. 22. Brooks-Richards TL, Paxton NC, Allenby MC, et al., 2022,
Mater Des, 148: 87–95. Dissolvable 3D printed PVA moulds for melt electrowriting
tubular scaffolds with patient-specific geometry. Mater Des,
https://doi.org/10.1016/j.matdes.2018.03.053
215: 110466.
13. Tourlomousis F, Jia C, Karydis T, et al., 2019, Machine
learning metrology of cell confinement in melt electrowritten https://doi.org/10.1016/j.matdes.2022.110466
three-dimensional biomaterial substrates. Microsystems 23. Hochleitner G, Jüngst T, Brown TD, et al., 2015, Additive
Nanoeng, 5: 15. manufacturing of scaffolds with sub-micron filaments via
melt electrospinning writing. Biofabrication, 7: 035002.
https://doi.org/10.1038/s41378-019-0055-4
https://doi.org/10.1088/1758-5090/7/3/035002
14. Peiffer QC, de Ruijter M, van Duijn J, et al., 2020, Melt
electrowriting onto anatomically relevant biodegradable 24. Hochleitner G, Hümmer JF, Luxenhofer R, et al., 2014,
substrates: Resurfacing a diarthrodial joint. Mater Des, High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds
195: 109025. through melt electrospinning writing. Polymer (Guildf),
55: 5017–5023.
https://doi.org/10.1016/j.matdes.2020.109025
https://doi.org/10.1016/j.polymer.2014.08.024
15. Su Y, Zhang Z, Wan Y, et al., 2020, A hierarchically ordered
compacted coil scaffold for tissue regeneration. NPG Asia 25. Collins G, Federici J, Imura Y, et al., 2012, Charge generation,
Mater, 12: 4–13. charge transport, and residual charge in the electrospinning
of polymers: A review of issues and complications, J Appl
https://doi.org/10.1038/s41427-020-0234-7
Phys, 111: 044701.
16. Jin Y, Gao Q, Xie C, et al., 2020, Fabrication of heterogeneous
scaffolds using melt electrospinning writing: Design and https://doi.org/10.1063/1.3682464
optimization. Mater Des, 185: 108274. 26. Kim J, Bakirci E, Neill KLO, et al., 2021, Fiber bridging
during melt electrowriting of poly (ε-Caprolactone) and the
https://doi.org/10.1016/j.matdes.2019.108274
influence of fiber diameter and wall height. Macromol Mater
17. Hochleitner G, Chen F, Blum C, et al., 2018, Melt Eng, 306: 2000685.
electrowriting below the critical translation speed to
fabricate crimped elastomer scaffolds with non-linear https://doi.org/10.1002/mame.202000685
extension behaviour mimicking that of ligaments and 27. Ding H, Cao K, Zhang F, et al., 2019, A fundamental study of
tendons. Acta Biomater, 72: 110–120. charge effects on melt electrowritten polymer fibers. Mater
https://doi.org/10.1016/j.actbio.2018.03.023 Des, 178: 107857.
https://doi.org/10.1016/j.matdes.2019.107857
18. Bas O, Angella DD, Baldwin JG, et al., 2017, An integrated
design, material, and fabrication platform for engineering 28. Wunner FM, Wille M, Noonan TG, et al., 2018, Melt
biomechanically and biologically functional soft tissues. electrospinning writing of highly ordered large volume
ACS Appl Mater Interfaces, 9: 29430–29437. scaffold architectures. Adv Mater, 30: 1706570.
https://doi.org/10.1021/acsami.7b08617 https://doi.org/10.1002/adma.201706570
19. Meng J, Boschetto F, Yagi S, et al., 2021, Design and 29. He J, Hao G, Meng Z, et al., 2021, Expanding melt-
manufacturing of 3D high-precision micro-fibrous poly based electrohydrodynamic printing of highly-ordered
(L-lactic acid) scaffold using melt electrowriting technique microfibrous architectures to cm-height via in situ charge
for bone tissue engineering. Mater Des, 210: 110063. neutralization. Adv Mater Technol, 7: 2101197.
https://doi.org/10.1016/j.matdes.2021.110063 https://doi.org/10.1002/admt.202101197
20. Castilho M, Feyen D, Flandes-Iparraguirre M, et al., 2017, Melt 30. Cao K, Zhang F, Zaeri A, et al., 2022, Quantitative
electrospinning writing of poly-hydroxymethylglycolide- investigation into the design and process parametric effects
Volume 9 Issue 2 (2022) 102 https://doi.org/10.18063/ijb.v9i2.656

