Page 374 - IJB-9-2
P. 374

International Journal of Bioprinting               Laser bioprinting of hiPSC-derived neural stem cells and neurons



            4.   Cantley WL, Du C, Lomoio S,  et al.,  2018, Functional   15.  Shi, Y, Inoue H, Wu JC, et al.,  2017, Induced pluripotent
               and sustainable 3D  human neural network models from   stem cell technology: A decade of progress. Nat Rev Drug
               pluripotent stem cells. ACS Biomater Sci Eng, 4:4278–4288.  Discov, 16:115–130.
               https://doi.org/10.1021/acsbiomaterials.8b00622    https://doi.org/10.1038/nrd.2016.245
            5.   Jakobsson A, Ottosson M, Zalis MC,  et al.,  2017, Three-  16.  Canfield SG, Stebbins MJ, Faubion MG,  et al.,  2019, An
               dimensional functional human neuronal networks in   isogenic neurovascular unit model comprised of human
               uncompressed  low-density  electrospun fiber  scaffolds.   induced pluripotent stem cell-derived brain microvascular
               Nanomed Nanotechnol Biol Med, 13:1563–1573.        endothelial cells, pericytes, astrocytes, and neurons. Fluids
                                                                  Barriers CNS, 16:1–12.
               https://doi.org/10.1016/j.nano.2016.12.023
                                                                  https://doi.org/10.1186/s12987-019-0145-6
            6.   Koroleva A, Deiwick A, El-Tamer A, et al., 2021, In vitro
               development of human iPSC-derived functional neuronal   17.  Marton RM, Miura Y, Sloan SA, et al., 2019, Differentiation
               networks on laser-fabricated 3D scaffolds. ACS Appl Mater   and  maturation  of  oligodendrocytes  in  human  three-
               Interfaces, 13:7839–7853.                          dimensional neural cultures. Nat Neurosci, 22:484–491.
               https://doi.org/10.1021/acsami.0c16616             https://doi.org/10.1038/s41593-018-0316-9
            7.   Lancaster MA, Renner M, Martin CA,  et al.,  2013,   18.  Xu T, Gregory CA, Molnar P,  et al.,  2006, Viability and
               Cerebral organoids model human brain development and   electrophysiology of neural cell structures generated by the
               microcephaly. Nature, 501:373–379.                 inkjet printing method. Biomaterials, 27:3580–3588.
               https://doi.org/10.1038/nature12517                https://doi.org/10.1016/j.biomaterials.2006.01.048
            8.   Camp JG, Badsha F, Florio M, et al., 2015, Human cerebral   19.  Lee W, Pinckney J, Lee V, et al., 2009, Three-dimensional
               organoids recapitulate gene expression programs of fetal   bioprinting of rat embryonic neural cells.  NeuroReport,
               neocortex development. Proc Natl Acad Sci USA, 112:15672–  20:798–803.
               15677.
                                                                  https://doi.org/10.1097/WNR.0b013e32832b8be4
               https://doi.org/10.1073/pnas.1520760112
                                                               20.  Lorber B, Hsiao WK, Hutchings IM, et al., 2014, Adult rat
            9.   Quadrato G, Brown J, Arlotta P, 2016, The promises   retinal ganglion cells and glia can be printed by piezoelectric
               and challenges of human brain organoids as models of   inkjet printing. Biofabrication, 6:015001.
               neuropsychiatric disease. Nat Med, 22:1220–1228.
                                                                  https://doi.org/10.1088/1758-5082/6/1/015001
               https://doi.org/10.1038/nm.4214
                                                               21.  Lozano R, Stevens L, Thompson BC, et al., 2015, 3D printing
            10.  Birey F, Andersen J, Makinson CD, et al., 2017, Assembly of   of layered brain-like structures using peptide modified
               functionally integrated human forebrain spheroids. Nature,   gellan gum substrates. Biomaterials, 67:264–273.
               545:54–59.
                                                                  https://doi.org/10.1016/j.biomaterials.2015.07.022
               https://doi.org/10.1038/nature22330
                                                               22.  Kador KE, Venugopalan P, Malek MF, et al., 2016, Control
            11.  Hofrichter M, Nimtz L, Tigges J, et al., 2017, Comparative   of retinal ganglion cell positioning and neurite growth:
               performance analysis of human iPSC-derived and primary   Combining 3D printing with radial electrospun scaffolds.
               neural  progenitor  cells  (NPC)  grown  as  neurospheres  in   Tissue Eng Part A, 22:286–294.
               vitro. Stem Cell Res, 25:72–82.
                                                                  https://doi.org/10.1089/ten.TEA.2015.0373
               https://doi.org/10.1016/j.scr.2017.10.013
                                                               23.  Curley JL, Sklare SC, Bowser DA, et al., 2016, Isolated node
            12.  Takahashi K, Tanabe K, Ohnuki M, et al., 2007, Induction   engineering of neuronal systems using laser direct write.
               of pluripotent stem cells from adult human fibroblasts by   Biofabrication, 8:015013.
               defined factors. Cell, 131:861–872.
                                                                  https://doi.org/10.1088/1758-5090/8/1/015013
               https://doi.org/10.1016/j.cell.2007.11.019
                                                               24.  Song Y, Su X, Firouzian KF,  et al.,  2020, Engineering of
            13.  Haase A, Olmer R, Schwanke K, et al., 2009, Generation of   brain-like tissue constructs via 3D cell-printing technology,
               induced pluripotent stem cells from human cord blood. Cell   Biofabrication, 12:035016.
               Stem Cell, 5:434–441.
                                                                  https://doi.org/10.1088/1758-5090/ab7d76
               https://doi.org/10.1016/j.stem.2009.08.021
                                                               25.  Roversi K, Ebrahimi Orimi H, Falchetti M,  et al., 2021,
            14.  Shi Y, Kirwan P, Livesey FJ, 2012, Directed differentiation of   Bioprinting of adult dorsal root ganglion (DRG) neurons
               human pluripotent stem cells to cerebral cortex neurons and   using laser-induced side transfer (LIST).  Micromachines,
               neural networks. Nat Protoc, 7:1836–1846.          12, 865.
               https://doi.org/10.1038/nprot.2012.116             https://doi.org/10.3390/mi12080865


            Volume 9 Issue 2 (2023)                        366                     https://doi.org/10.18063/ijb.v9i2.672
   369   370   371   372   373   374   375   376   377   378   379