Page 26 - IJPS-2-1
P. 26

Nonparametric graduation techniques as a common framework for the description of demographic patterns

       Hermann E. (1997). Local bandwidth choice in kernel regression estimation. Journal of Computational and Graphi-
         cal Statistics, 6(1): 35–54. http://dx.doi.org/10.1080/10618600.1997.10474726.
       Hoem J M, Madsen D, Nielsen J L, et al. (1981). Experiments in modelling recent Danish fertility curves. Demogra-
         phy, 18(2): 231–244. http://dx.doi.org/10.2307/2061095.
       Karlis D and Kostaki A. (2000). Bootstrap techniques for mortality models. Biometrical Journal, 44(7): 850–866.
         http://dx.doi.org/10.1002/1521-4036(200210)44:7%3C850::AID-BIMJ850%3E3.0.CO;2-6.
       Kaneko R. (1991). Demographic analysis of the first marriage process. Jinko Mondai Kenkyu, 47(3): 3–27.
       Kaneko R. (2003). Elaboration of the Coale-McNeil nuptiality model as the generalised log gamma distribution: a
         new identity and empirical enhancements. Demographic Research, 9(10): 223–262.
         http://dx.doi.org/10.4054/DemRes.2003.9.10.
       Keyfitz N. (1982). Choice of function for mortality analysis: effective forecasting depends on a minimum parameter
         representation. Theoretical Population Biology, 21(3): 329–352.
         http://dx.doi.org/10.1016/0040-5809(82)90022-3.
       Kostaki A. (1992). Nine-parameter version of the Heligman-Pollard formula. Mathematical Population Studies, 3(4):
         277–288. http://dx.doi.org/10.1080/08898489209525346.
       Kostaki A and Peristera P. (2007). Modeling fertility in modern populations. Demographic Research, 16: 141–194.
         http://dx.doi.org/10.4054/DemRes.2007.16.6.
       Liang Z. (2000). The Coale-McNeil model: theory, generalisation and application. Retrieved on October 20, 2016
         from http://www.popline.org/node/172229.
       Mode C J and Busby R C. (1982). An eight-parameter model of human mortality —the single decrement case. Bulle-
         tin of Mathematical Biology, 44(5): 647–659. http://dx.doi.org/10.1007/BF02462273.
       Moguerza J M and Muñoz A. (2006). Support vector machines with applications. Statistical Science, 21(3): 322–336.
         http://dx.doi.org/10.1214/088342306000000493.
       Moguerza J M, Muñoz A and Psarakis S. (2007). Monitoring nonlinear profiles using support vector machines, in L
         Rueda,  D  Mery and  J  Kittler (eds),  Progress in Pattern  Recognition, Image  Analysis and  Applications, 4789:
         574–583. Berlin: Springer. http://dx.doi.org/10.1007/978-3-540-76725-1_60.
       Muñoz A and Moguerza J M. (2005). Building smooth neighbourhood kernels via functional data analysis, in W
         Duch,  J  Kacprzyk,  E  Oja,  et al. (eds),  Artificial  Neural Networks: Formal Models and Their Applications  –
         ICANN 2005, 3697: 631–636. Berlin: Springer. http://dx.doi.org/10.1007/11550907_100.
       Ortega Osona J A and Kohler H P. (2000). A comment on “Recent European fertility patterns: fitting curves to ‘dis-
         torted’ distributions”, by  T Chandola, D A Coleman and R W Hiorns.  Population Studies, 54(3): 347–349.
         http://dx.doi.org/10.1080/713779092.
       Pearce N D and Wand M P. (2006). Penalized splines and reproducing kernel methods. The American Statistician,
         60(3): 233–240. http://dx.doi.org/10.1198/000313006X124541.
       Peristera P and Kostaki A. (2005). An evaluation of the performance of kernel estimators for graduating mortality
         data. Journal of Population Research, 22: 185–197. http://dx.doi.org/10.1007/BF03031828.
       Ruppert D, Sheather S J and Wand M P. (1995). An effective bandwidth selector for local least squares regression.
         Journal of the American Statistical Association, 90 (432): 1257–1270.
         http://dx.doi.org/10.1080/01621459.1995.10476630.
       Schmertmann C P. (2003). A system of model fertility schedules with graphically intuitive parameters. Demographic
         Research, 9: 82–110. http://dx.doi.org/10.4054/DemRes.2003.9.5.
       Schölkopf B, Smola A J, Williamson RC, et al. (2000). New support vector algorithms. Neural Computation, 12(5):
         1207–1245. http://dx.doi.org/10.1162/089976600300015565.
       Tikhonov A N and Arsenin V Y. (1977). Solutions of Ill-posed Problems. New York: John Wiley and Sons.
         http://dx.doi.org/10.2307/2006360.
       Vapnik V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
         http://dx.doi.org/10.1007/978-1-4757-2440-0.









       20                 International Journal of Population Studies | 2016, Volume 2, Issue 1
   21   22   23   24   25   26   27   28   29   30   31