Page 26 - IJPS-2-1
P. 26
Nonparametric graduation techniques as a common framework for the description of demographic patterns
Hermann E. (1997). Local bandwidth choice in kernel regression estimation. Journal of Computational and Graphi-
cal Statistics, 6(1): 35–54. http://dx.doi.org/10.1080/10618600.1997.10474726.
Hoem J M, Madsen D, Nielsen J L, et al. (1981). Experiments in modelling recent Danish fertility curves. Demogra-
phy, 18(2): 231–244. http://dx.doi.org/10.2307/2061095.
Karlis D and Kostaki A. (2000). Bootstrap techniques for mortality models. Biometrical Journal, 44(7): 850–866.
http://dx.doi.org/10.1002/1521-4036(200210)44:7%3C850::AID-BIMJ850%3E3.0.CO;2-6.
Kaneko R. (1991). Demographic analysis of the first marriage process. Jinko Mondai Kenkyu, 47(3): 3–27.
Kaneko R. (2003). Elaboration of the Coale-McNeil nuptiality model as the generalised log gamma distribution: a
new identity and empirical enhancements. Demographic Research, 9(10): 223–262.
http://dx.doi.org/10.4054/DemRes.2003.9.10.
Keyfitz N. (1982). Choice of function for mortality analysis: effective forecasting depends on a minimum parameter
representation. Theoretical Population Biology, 21(3): 329–352.
http://dx.doi.org/10.1016/0040-5809(82)90022-3.
Kostaki A. (1992). Nine-parameter version of the Heligman-Pollard formula. Mathematical Population Studies, 3(4):
277–288. http://dx.doi.org/10.1080/08898489209525346.
Kostaki A and Peristera P. (2007). Modeling fertility in modern populations. Demographic Research, 16: 141–194.
http://dx.doi.org/10.4054/DemRes.2007.16.6.
Liang Z. (2000). The Coale-McNeil model: theory, generalisation and application. Retrieved on October 20, 2016
from http://www.popline.org/node/172229.
Mode C J and Busby R C. (1982). An eight-parameter model of human mortality —the single decrement case. Bulle-
tin of Mathematical Biology, 44(5): 647–659. http://dx.doi.org/10.1007/BF02462273.
Moguerza J M and Muñoz A. (2006). Support vector machines with applications. Statistical Science, 21(3): 322–336.
http://dx.doi.org/10.1214/088342306000000493.
Moguerza J M, Muñoz A and Psarakis S. (2007). Monitoring nonlinear profiles using support vector machines, in L
Rueda, D Mery and J Kittler (eds), Progress in Pattern Recognition, Image Analysis and Applications, 4789:
574–583. Berlin: Springer. http://dx.doi.org/10.1007/978-3-540-76725-1_60.
Muñoz A and Moguerza J M. (2005). Building smooth neighbourhood kernels via functional data analysis, in W
Duch, J Kacprzyk, E Oja, et al. (eds), Artificial Neural Networks: Formal Models and Their Applications –
ICANN 2005, 3697: 631–636. Berlin: Springer. http://dx.doi.org/10.1007/11550907_100.
Ortega Osona J A and Kohler H P. (2000). A comment on “Recent European fertility patterns: fitting curves to ‘dis-
torted’ distributions”, by T Chandola, D A Coleman and R W Hiorns. Population Studies, 54(3): 347–349.
http://dx.doi.org/10.1080/713779092.
Pearce N D and Wand M P. (2006). Penalized splines and reproducing kernel methods. The American Statistician,
60(3): 233–240. http://dx.doi.org/10.1198/000313006X124541.
Peristera P and Kostaki A. (2005). An evaluation of the performance of kernel estimators for graduating mortality
data. Journal of Population Research, 22: 185–197. http://dx.doi.org/10.1007/BF03031828.
Ruppert D, Sheather S J and Wand M P. (1995). An effective bandwidth selector for local least squares regression.
Journal of the American Statistical Association, 90 (432): 1257–1270.
http://dx.doi.org/10.1080/01621459.1995.10476630.
Schmertmann C P. (2003). A system of model fertility schedules with graphically intuitive parameters. Demographic
Research, 9: 82–110. http://dx.doi.org/10.4054/DemRes.2003.9.5.
Schölkopf B, Smola A J, Williamson RC, et al. (2000). New support vector algorithms. Neural Computation, 12(5):
1207–1245. http://dx.doi.org/10.1162/089976600300015565.
Tikhonov A N and Arsenin V Y. (1977). Solutions of Ill-posed Problems. New York: John Wiley and Sons.
http://dx.doi.org/10.2307/2006360.
Vapnik V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
http://dx.doi.org/10.1007/978-1-4757-2440-0.
20 International Journal of Population Studies | 2016, Volume 2, Issue 1

