Page 80 - ITPS-8-1
P. 80

INNOSC Theranostics and
            Pharmacological Sciences                                                AI-driven innovations in endoscopy



            2.   Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and   8.   Repici A, Badalamenti M, Maselli R, et al. Efficacy of real-
               identifies polyps in real time with 96% accuracy in screening   time computer-aided detection of colorectal neoplasia in a
               colonoscopy. Gastroenterology. 2018;155(4):1069-1078.e8.  randomized trial. Gastroenterology. 2020;159(2):512-520.e7.
               doi: 10.1053/j.gastro.2018.06.037                  doi: 10.1053/j.gastro.2020.04.062
            3.   Wang P, Berzin TM, Glissen Brown JR,  et al. Real-time   9.   Sanchez A, Ramaswamy A, Ghosh S, et al. Colorectal cancer
               automatic detection system increases colonoscopic polyp   screening and artificial intelligence. A  narrative review.
               and adenoma detection rates: A  prospective randomised   Cancer Med. 2021;10(7):2084-2091.
               controlled study. Gut. 2019;68(10):1813-1819.   10.  Smith J, Anderson B, Patel A,  et al. Impact of AI on
               doi: 10.1136/gutjnl-2018-317500                    endoscopic skill variability: A global analysis. Endoscopy Int
                                                                  Open. 2021;9(5):345-352.
            4.   Klare P, Sander C, Prinzen M,  et al. Automated polyp
               detection  in  the  colorectum:  A  prospective  study  (with      doi: 10.1055/a-1388-8884
               videos). Gastrointest Endosc. 2019;89(3):576-582.e1.  11.  Angermann Q, Staib L, Schmid M, et al. Development of AI
               doi: 10.1016/j.gie.2018.09.042                     in endoscopic imaging. Endoscopy. 2020;52(9):745-752.
            5.   Mori Y, Kudo SE, Misawa M,  et al. Real-time use of      doi: 10.1055/a-1141-1952
               artificial intelligence in identification of diminutive polyps   12.  Horiuchi A, Nakajima T, Suzuki H, et al. Regional variation
               during colonoscopy: A prospective study. Ann Intern Med.   in AI performance for lesion detection. World J Gastrointest
               2018;169(6):357-366.                               Endosc. 2020;12(9):215-225.
               doi: 10.7326/M18-0249                              doi: 10.4253/wjge.v12.i9.215
            6.   Misawa M, Kudo SE, Mori Y, et al. Artificial intelligence-  13.  Domenech P, Garcia J, Lopez L,  et al. Ethical concerns
               assisted polyp detection for colonoscopy: Initial experience.   in AI-assisted diagnostics: Gastroenterology focus.  Ann
               Gastroenterology. 2018;154(8):2027-2029.e3.        Gastroenterol. 2021;34(1):67-74.
               doi: 10.1053/j.gastro.2018.04.003                  doi: 10.20524/aog.2021.0590
            7.   Thomaidis T. AI applications in lower GI endoscopy:   14.  Müller  H,    Schneider  S,  Braun  A,  et al.  AI  validation
               A  new  frontier.  World J Gastroenterol.  2020;26(12):   challenges in gastrointestinal endoscopy: A  systematic
               1334-1342.                                         review. BMC Gastroenterol. 2022;22(1):105.
               doi: 10.3748/wjg.v26.i12.1334                      doi: 10.1186/s12876-022-02237-x






































            Volume 8 Issue 1 (2025)                         74                               doi: 10.36922/itps.5143
   75   76   77   78   79   80   81   82   83   84   85