Page 127 - JCAU-6-4
P. 127

Journal of Chinese
            Architecture and Urbanism                      Indoor wind environment in buildings for Qinghai-Tibet plateau of China



               CFD simulation, multiple parametric tools and evaluation      https://doi.org/10.1016/j.enbuild.2018.08.042
               criteria. Building Simulation, 13:609-625.
                                                               Nie,  Q.,  Zhang,  Q.,  Sang,  G.,  Zhu,  Y., &  Luo, D.  (2017).  拉萨
               https://doi.org/10.1007/s12273-019-0591-8          乡村碉房民居冬季室内热环境测试研究 [Research on
                                                                  Interior Thermal Environment of Rural Blockhouses in Lhasa
            Hou, Y., Cheng, R., Yan, H., & Cai, Y. (2023). 历史街区中既有建  in Winter]. 中国知网 [Beijing: China National Knowledge
               筑风环境模拟及优化设计-以青岛小扬州宾馆为 [Wind
               Environment Simulation and Optimization Design of the   Infrastructure]. [Chinese]
               Existing Buildings in Historical Blocks: A Case of Qingdao   https://doi.org/10.13614/j.cnki.11-1962/tu.2017.10.04
               Xiaoyangzhou Hotel].  中国知网 [Beijing: China National   Ryu, Y., Kim, S., & Lee, D. (2009). The influence of wind flows on
               Knowledge Infrastructure]. [Chinese]
                                                                  thermal comfort in the Daechung of a traditional Korean
            https://doi.org/10.19892/j.cnki.csjz.2023.02.35       house. Building and Environment, 44(1):18-26.
            Huang, L., Neveen, H., Bing, L., & Dava, Z. (2016). Climate-     https://doi.org/10.1016/j.buildenv.2008.01.007
               responsive design of traditional dwellings in the cold-  Taylor, G. I. (1915). Eddy motion in the atmosphere. Philosophical
               arid regions of Tibet and a field investigation of indoor
               environments in winter. Energy Buildings, 128:697-712.  Transactions of the Royal Society of London. Series A, 215,
                                                                  1-26.
               https://doi.org/10.1016/j.enbuild.2016.07.006
                                                                  https://doi.org/10.1098/rsta.1915.0001
            Huerto-Cardenas, H. E., Leonforte, F., Aste, N., Pero, C., Evola, G.,
               Costanzo, V.,  et  al. (2020). Validation of dynamic   Wang, X., Mai, X., Lei, B., Bi, H., Zhao, B., & Mao, G. (2020).
               hygrothermal simulation models for historical buildings:   Collaborative optimization between passive design measures
               State of the art, research challenges and recommendations.   and active heating systems for building heating in Qinghai-
               Building and Environment, 180:107081.              Tibet plateau of China. Renewable Energy, 147:683-694.
                                                                  https://doi.org/10.1016/j.renene.2019.09.031
               https://doi.org/10.1016/j.buildenv.2020.107081
                                                               Wang, Y., & Cao, H. (2021). Study on ecological adaptability
            International Energy Agency (IEA). 2020. 2020 年全球能源统计报告   construction characteristics of residential buildings in
               [Global Energy Consumption Report]. https://download.csdn.
               net/download/Poorest/22021048?spm=1001.2101.3001.9500.   Kangba area, Tibet, China.  Environmental Science and
               [Chinese] [Last accessed on 2024 Oct 24].          Pollution Research, 29(1):573-583.
                                                                  https://doi.org/10.1007/s11356-021-15670-z
            Li, C. (2010).  近地湍流风场的CFD模拟研究 [Study on CFD
               Simulation of Turbulence Wind Field Near Ground].  中国  Wang, Y., Yoshino, Y., Liu, J., & Yang, L. (2018). A study on the
               知网 [Beijing: China National Knowledge Infrastructure].   actual conditions of residential environment and a solar
               [Chinese]                                          energy applied house in the Tibetan Plateau.  Journal of
                                                                  Asian Architecture and Building Engineering, 16:403-408.
            Li, S., He, Q., Yang, L., Liu, J., & SO Architecture. (2014).
               Climate adaptability of vernacular architecture in Kang   Wang, Y., Zhang, P., Ju, X., & Zhang, Y. (2012). Applications of
               region of Eastern Tibet.  Building Energy Efficiency,  42(4):   appropriate renewable energy technologies in Chinese rural
               65-68, 94.                                         houses located in Qinghai-Tibetan Plateau.  International
                                                                  Journal of Sustainable Building Technology and Urban
            Liu, T., Cheng, S., & Li, X. (2022). Research on wind environment
               of Nanfeng ancient city based on Phoenics simulation. China   Development, 2:143-149.
               Academic Journal Electronic Publishing House, 3:14-21.  Yu, T., Liu, B., Lei, B., Yuan, Y., Bi, H., & Zhang, Z. (2019). Thermal
                                                                  performance of a heating system combining solar air
            Liu, Z., Wu, D., He, B., Liu, Y., Zhang, X., Yu, H., et al. (2018).
               Using solar house to alleviate energy poverty of rural   collector with hollow ventilated interior wall in residential
               Qinghai-Tibet region, China: A case study of a novel hybrid   buildings on Tibetan Plateau. Energy, 182:93-109.
               heating system. Energy Buildings, 178:294-303.     https://doi.org/10.1016/j.energy.2019.06.047



















            Volume 6 Issue 4 (2024)                         13                       https://doi.org/10.36922/jcau.2396
   122   123   124   125   126   127   128   129   130   131   132