Page 32 - MI-2-1
P. 32

Microbes & Immunity                                                       Microbial involvement in ME/CFS



               transcriptionally  active  bacteria  throughout  the  34.  Dalile B, Van Oudenhove L, Vervliet B, Verbeke K.
               gastrointestinal tract of healthy individuals. Gastroenterology.   The role of short-chain  fatty acids in microbiota-gut-
               2019;157(4):1081-1092.e3.                          brain communication.  Nat Rev Gastroenterol Hepatol.
                                                                  2019;16:461-478.
               doi: 10.1053/j.gastro.2019.05.068
                                                                  doi: 10.1038/s41575-019-0157-3
            23.  Borrego-Ruiz A, Borrego JJ. Human gut microbiome, diet,
               and mental disorders. Int Microbiol. 2024.      35.  Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty
                                                                  acids  from  gut microbiota in  gut-brain  communication.
               doi: 10.1007/s10123-024-00518-6
                                                                  Front Endocrinol (Lausanne). 2020;11:25.
            24.  Iizumi T, Battaglia T, Ruiz V, Perez Perez GI. Gut microbiome      doi: 10.3389/fendo.2020.00025
               and antibiotics. Arch Med Res. 2017;48(8):727-734.
                                                               36.  Qian XH, Xie RY, Liu XL, Chen SD, Tang HD. Mechanisms
               doi: 10.1016/j.arcmed.2017.11.004                  of short-chain fatty acids derived from gut microbiota in
            25.  Tanaka M, Nakayama, J. Development of the gut microbiota   Alzheimer’s disease. Aging Dis. 2022;13(4):1252-1266.
               in infancy and its impact on health in later life. Allergol Int.      doi: 10.14336/AD.2021.1215
               2017;66(4):515-522.
                                                               37.  Blacher E, Levy M, Tatirovsky E, Elinav E. Microbiome-
               doi: 10.1016/j.alit.2017.07.010                    modulated metabolites at the interface of host immunity.
            26.  Das B, Nair GB. Homeostasis and dysbiosis of the gut   J Immunol. 2017;198(2):572-580.
               microbiome in health and disease. J Biosci. 2019;44(5):117.     doi: 10.4049/jimmunol.1601247
               doi: 10.1007/s12038-019-9926-y                  38.  Salami M. Interplay of good bacteria and central nervous
            27.  Brestoff JR, Artis D. Commensal bacteria at the interface   system: Cognitive aspects and mechanistic considerations.
               of host metabolism and the immune system. Nat Immunol.   Front Neurosci. 2021;15:613120.
               2013;14(7):676-684.                                doi: 10.3389/fnins.2021.613120
               doi: 10.1038/ni.2640                            39.  Vogl T, Kalka IN, Klompus S, Leviatan S, Weinberger A,
            28.  Hou K, Wu ZX, Chen XY, et al. Microbiota in health and   Segal E. Systemic antibody responses against human
               diseases. Signal Transduct Target Ther. 2022;7(1):135.  microbiota flagellins are overrepresented in chronic fatigue
                                                                  syndrome patients. Sci Adv. 2022;8(38):eabq2422.
               doi: 10.1038/s41392-022-00974-4
                                                                  doi: 10.1126/sciadv.abq2422
            29.  Yin R, Kuo HC, Hudlikar R, et al. Gut microbiota, dietary
               phytochemicals and benefits to human health.  Curr   40.  Shukla SK, Cook D, Meyer J,  et  al. Changes in gut and
               Pharmacol Rep. 2019;5:332-344.                     plasma microbiome following exercise challenge in Myalgic
                                                                  Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).
               doi: 10.1007/s40495-019-00196-3                    PLoS One. 2015;10(12):e0145453.
            30.  Rooks MG, Garrett WS. Gut microbiota, metabolites and      doi: 10.1371/journal.pone.0145453
               host immunity. Nat Rev Immunol. 2016;16(6):341-352.
                                                               41.  Armstrong CW, McGregor NR, Lewis DP, Butt HL, Gooley PR.
               doi: 10.1038/nri.2016.42                           The association of fecal microbiota and fecal, blood serum
            31.  Keszthelyi D. Histamine-producing bacteria: The missing   and urine metabolites in myalgic encephalomyelitis/chronic
               link  in  irritable  bowel  syndrome?  Gastroenterology.   fatigue syndrome. Metabolomics. 2017;13(1):8.
               2023;164(1):160-161.                               doi: 10.1007/s11306-016-1145-z
               doi: 10.1053/j.gastro.2022.08.053               42.  Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE,
            32.  Ruan  W,  Engevik  MA,  Spinler  JK,  Versalovic J.  Healthy   Hanson MR. Reduced diversity and altered composition
               human   gastrointestinal  microbiome:  Composition  of the gut microbiome in individuals with myalgic
               and function after a decade of exploration.  Dig Dis Sci.   encephalomyelitis/chronic fatigue syndrome.  Microbiome.
               2020;65(3):695-705.                                2016;4(1):30.
               doi: 10.1007/s10620-020-06118-4                    doi: 10.1186/s40168-016-0171-4
            33.  Rothhammer V, Mascanfroni ID, Bunse L,  et al. Type  I   43.  Mandarano  AH,  Giloteaux  L,  Keller  BA,  Levine  SM,
               interferons and microbial metabolites of tryptophan   Hanson MR. Eukaryotes in the gut microbiota in myalgic
               modulate astrocyte activity and central nervous system   encephalomyelitis/chronic  fatigue  syndrome.  PeerJ.
               inflammation via the aryl hydrocarbon receptor. Nat Med.   2018;6:e4282.
               2016;22(6):586-597.                                doi: 10.7717/peerj.4282
               doi: 10.1038/nm.4106                            44.  Kitami  T,  Fukuda S,  Kato  T,  et al.  Deep  phenotyping  of


            Volume 2 Issue 1 (2025)                         24                               doi: 10.36922/mi.4783
   27   28   29   30   31   32   33   34   35   36   37