Page 51 - MSAM-4-2
P. 51

Materials Science in Additive Manufacturing                        Measuring the porosity of AM components



               stainless-steel structures using fused filament fabrication   Steel Composite Metal Filament for 3D Printers. Available
               technology: Mechanical and geometric properties.  Rapid   from: https://forward-am.com/material-portfolio/ultrafuse-
               Prototyp J. 2021;27(3):583-591.                    filaments-for-fused-filaments-fabrication-fff/metal-
               doi: 10.1108/RPJ-06-2020-0120                      filaments/ultrafuse-316l [Last accessed on 2024 Sep 04].
            26.  Galarraga H, Lados DA, Dehoff RR, Kirka MM,   35.  Lithoz GmbH. Thermal Post Processing - LithaCon 3Y 230.
               Nandwana P. Effects of the microstructure and porosity on   V2; TPP201.209. Unpublished thermal post processing data
               properties of Ti-6Al-4V ELI alloy fabricated by electron   sheet, 2020.
               beam melting (EBM). Addit Manuf. 2016;10:47-57.  36.  Lithoz GmbH. Technical Data Sheet: LithaCon 3Y 230 D.
               doi: 10.1016/j.addma.2016.02.003                   Unpublished technical data sheet, 2019.
            27.  Scharowsky T, Juechter V, Singer RF, Körner C. Influence of   37.  Hughes S, Quintero Olaya S. Using pycnometry and
               the scanning strategy on the microstructure and mechanical   Archimedes’ principle to measure the gross and air cavity
               properties in selective electron beam melting of Ti-6Al-4V.   volume of fruit. IOP SciNotes. 2021;2(2):25201.
               Adv Eng Mater. 2015;17(11):1573-1578.              doi: 10.1088/2633-1357/abf33f
               doi: 10.1002/adem.201400542                     38.  De  Terris  T,  Andreau  O,  Peyre  P,  et  al.  Optimization
            28.  Homa J, Schwentenwein M. A novel additive manufacturing   and comparison of porosity rate measurement methods
               technology  for  high-performance  ceramics.  In:  of selective laser melted metallic parts.  Addit Manuf.
               Advanced Processing and Manufacturing Technologies for   2019;28:802-813.
               Nanostructured and Multifunctional Materials. United      doi: 10.1016/j.addma.2019.05.035
               States: John Wiley; 2014. p. 33-40.
                                                               39.  Kurose T, Abe Y, Santos MVA, et al. Influence of the layer
               doi: 10.1002/9781119040354.ch4                     directions on the properties of 316L stainless steel parts
            29.  Llanos G.  Additive Manufacturing of Zirconia: Chalmers   fabricated through fused deposition of metals.  Materials
               University of Technology; 2018. Available from: https://odr.  (Basel). 2020;13(11):2493.
               chalmers.se/handle/20.500.12380/255513 [Last accessed on      doi: 10.3390/ma13112493
               2025 Mar 20].
                                                               40.  Caminero MÁ, Romero Gutiérrez A, Chacón JM, García-
            30.  Suominen JM, Frankberg EJ, Vallittu PK,  et al.  Three-  Plaza E, Núñez PJ. Effects of fused filament fabrication
               dimensional printing of zirconia: Characterization of   parameters on the manufacturing of 316L stainless-steel
               early stage material properties.  Biomater  Invest  Dent.   components: Geometric and mechanical properties. Rapid
               2019;6(1):23-31.                                   Prototyp J. 2022;28(10):2004-2026.
               doi: 10.1080/26415275.2019.1640608                 doi: 10.1108/RPJ-01-2022-0023
            31.  Pellegrini A, Palmieri ME, Guerra MG. Evaluation of   41.  Rosnitschek T, Seefeldt A, Alber-Laukant B, Neumeyer T,
               anisotropic mechanical behaviour of 316L parts realized   Altstädt V, Tremmel S. Correlations of geometry and infill
               by metal fused filament fabrication using digital image   degree of extrusion additively manufactured 316L stainless
               correlation. Int J Adv Manuf Technol. 2022;120(11-12):7951-  steel components. Materials (Basel). 2021;14(18):5173.
               7965.
                                                                  doi: 10.3390/ma14185173
               doi: 10.1007/s00170-022-09303-z
                                                               42.  BASF 3D Printing Solutions GmbH.  Ultrafuse® Metal
            32.  O’Connor H, Singh G, Kumar A, Paetzold R, Celikin M,   Filaments: User Guidelines for 3D Printing Metal Parts.
               O’Cearbhaill ED. Fused filament fabrication using stainless   Available from: https://forward-am.com/material-portfolio/
               steel  316L‐polymer  blend: Analysis  and  optimization  for   ultrafuse-filaments-for-fused-filaments-fabrication-
               green  density  and surface  roughness.  Polym Composites.   fff/metal-filaments/ultrafuse-316l  [Last  accessed  on
               2024;45(12):10632-10644.                           2023 Apr 27].
               doi: 10.1002/pc.28496                           43.  MBF Bioscience.  Glossary: Stereology Terms Stereology
            33.  Reddy PK, Gandhi P, Singh G. Additive manufacturing   Information Center. Available from: https://www.stereology.
               of yttria-stabilized zirconia using digital light processing:   info/glossary-terms [Last accessed on 2023 Apr 27].
               Green density and surface roughness analysis.  Ceram Int.   44.  Carazzone JR, Martin CL, Cordero ZC. Crack initiation,
               2024;50(13):22974-22988.
                                                                  propagation, and arrest in sintering powder aggregates.
               doi: 10.1016/j.ceramint.2024.04.021                J Am Ceram Soc. 2020;103(9):4754-4773.
            34.  Forward AM. Technologies GmbH. Ultrafuse® 316L: Stainless      doi: 10.1111/jace.17170






            Volume 4 Issue 2 (2025)                         25                        doi: 10.36922/MSAM025090010
   46   47   48   49   50   51   52   53   54   55   56