Page 120 - TD-4-3
P. 120

Tumor Discovery                                                             Radiation oncologists in AI era



               doi: 10.1016/j.radonc.2024.110344                  cases undergoing radiation therapy and chemotherapy. Adv
            7.   Mackay K, Bernstein D, Glocker B, Kamnitsas K,   Radiat Oncol. 2020;5(6):1179-1187.
               Taylor A. A  review of the metrics used to assess auto-     doi: 10.1016/j.adro.2020.07.007
               contouring systems in radiotherapy.  Clin Oncol (R Coll
               Radiol). 2023;35(6):354-369.                    13.  Kraus KM, Oreshko M, Schnabel JA, Bernhardt D,
                                                                  Combs SE, Peeken JC. Dosiomics and radiomics-based
               doi: 10.1016/j.clon.2023.01.016                    prediction of pneumonitis after radiotherapy and immune
            8.   Bahloul MA, Jabeen S, Benoumhani S, Alsaleh HA,   checkpoint inhibition: The relevance of fractionation. Lung
               Belkhatir Z, Al-Wabil A. Advancements in synthetic CT   Cancer. 2024;189:107507.
               generation from MRI: A review of techniques, and trends      doi: 10.1016/j.lungcan.2024.107507
               in radiation therapy planning.  J  Appl  Clin Med Phys.
               2024;25(11):e14499.                             14.  Isaksson LJ, Pepa M, Zaffaroni M, et al. Machine learning-
                                                                  based models for prediction of toxicity outcomes in
               doi: 10.1002/acm2.14499
                                                                  radiotherapy. Front Oncol. 2020;10:790.
            9.   Giraud P, Bibault JE. Artificial intelligence in radiotherapy:      doi: 10.3389/fonc.2020.00790
               Current applications and future trends.  Diagn Interv
               Imaging. 2024;105(12):475-480.                  15.  Bitterman DS, Miller TA, Mak RH, Savova GK. Clinical
                                                                  natural language processing for radiation oncology: A
               doi: 10.1016/j.diii.2024.06.001
                                                                  review and practical primer. Int J Radiat Oncol Biol Phys.
            10.  Byrne  M,  Archibald-Heeren  B,  Hu  Y,  et al.  Varian  ethos   2021;110(3):641-655.
               online adaptive radiotherapy for prostate cancer: Early
               results of contouring accuracy, treatment plan quality, and      doi: 10.1016/j.ijrobp.2021.01.044
               treatment time. J Appl Clin Med Phys. 2022;23(1):e13479.  16.  Naik N, Hameed BMZ, Shetty DK, et al. Legal and ethical
               doi: 10.1002/acm2.13479                            consideration in  artificial intelligence in  healthcare:  Who
                                                                  takes responsibility? Front Surg. 2022;9:862322.
            11.  Zwanenburg A, Price G, Löck S. Artificial intelligence
               for response prediction and personalisation in radiation      doi: 10.3389/fsurg.2022.862322
               oncology. Strahlenther Onkol. 2025;201(3):266-273.  17.  Lahmi L, Mamzer MF, Burgun A, Durdux C, Bibault JE.
               doi: 10.1007/s00066-024-02281-z                    Ethical aspects of artificial intelligence in radiation oncology.
                                                                  Semin Radiat Oncol. 2022;32(4):442-448.
            12.  Akcay M, Etiz D, Celik O. Prediction of survival and
               recurrence patterns by machine learning in gastric cancer      doi: 10.1016/j.semradonc.2022.06.013





































            Volume 4 Issue 3 (2025)                        112                           doi: 10.36922/TD025200039
   115   116   117   118   119   120   121   122