Page 21 - TD-4-3
P. 21

Tumor Discovery                                                                    FBXW7 in Leukemia



            66.  Chiplunkar  SV, Gogoi  D.  The  multifaceted role  of Notch   2022;14(12):2997.
               signal in regulating T cell fate. Immunol Lett. 2019;206:59-64.
                                                                  doi: 10.3390/cancers14122997
               doi: 10.1016/j.imlet.2019.01.004
                                                               77.  Luo F, Zhang C, Shi Z, Mao T, Jin LH. Notch signaling
            67.  Song C, Guo Y, Chen F, Liu W. IRF-1-inhibited lncRNA   promotes differentiation, cell death and autophagy in
               XIST regulated the osteogenic differentiation via miR-450b/  Drosophila hematopoietic system. Insect Biochem Mol Biol.
               FBXW7 axis. Apoptosis. 2023;28(3-4):669-680.       2024;173:104176.
               doi: 10.1007/s10495-023-01820-w                    doi: 10.1016/j.ibmb.2024.104176
            68.  Liu Z, Liu X, Liu S, Cao Q. Cholesterol promotes  the   78.  Ohtsubo  M,  Theodoras  AM,  Schumacher  J,  Roberts  JM,
               migration and invasion of renal carcinoma cells by regulating   Pagano M. Human cyclin E, a nuclear protein essential for the
               the KLF5/miR-27a/FBXW7 pathway. Biochem Biophys Res   G1-to-S phase transition. Mol Cell Biol. 1995;15(5):2612-2624.
               Commun. 2018;502(1):69-75.                         doi: 10.1128/MCB.15.5.2612
               doi: 10.1016/j.bbrc.2018.05.122                 79.  Guo X, Zhang R, Ge Z, et al. Mutations of FBXW7 in adult
            69.  Sun L. F-box and WD repeat domain-containing 7   T-cell acute lymphocytic leukemia. Zhongguo Shi Yan Xue
               (FBXW7) mediates the hypoxia inducible factor-1alpha   Ye Xue Za Zhi. 2015;23(3):612-618.
               (HIF-1alpha)/vascular endothelial growth factor (VEGF)      doi: 10.7534/j.issn.1009-2137.2015.03.002
               signaling pathway to affect hypoxic-ischemic brain damage
               in neonatal rats. Bioengineered. 2022;13(1):560-572.  80.  Bincoletto  C,  Saad  ST,  da  Silva  ES,  Queiroz  ML.
                                                                  Haematopoietic  response  and  bcl-2  expression  in
               doi: 10.1080/21655979.2021.2011635                 patients with acute myeloid leukaemia.  Eur J Haematol.
            70.  Yumimoto K, Nakayama KI. Recent insight into the role   1999;62(1):38-42.
               of FBXW7 as a tumor suppressor.  Semin Cancer Biol.      doi: 10.1111/j.1600-0609.1999.tb01112.x
               2020;67(Pt 2):1-15.
                                                               81.  Yang Z, Hu N, Wang W, et al. Loss of FBXW7 correlates with
               doi: 10.1016/j.semcancer.2020.02.017               increased IDH1 expression in glioma and enhances IDH1-
            71.  Elbahoty MH, Papineni B, Samant RS. Multiple myeloma:   mutant cancer cell sensitivity to radiation.  Cancer Res.
               clinical  characteristics,  current  therapies  and  emerging   2022;82(3):497-509.
               innovative treatments targeting ribosome biogenesis      doi: 10.1158/0008-5472.CAN-21-0384
               dynamics. Clin Exp Metastasis. 2024;41:829-842.
                                                               82.  He Y, Qi S, Chen L,  et al. The roles and mechanisms of
               doi: 10.1007/s10585-024-10305-2                    SREBP1 in cancer development and drug response. Genes
            72.  Liang JH, Ren YM, Du KX,  et  al. MYC-induced cytidine   Dis. 2024;11(4):100987.
               metabolism regulates survival and drug resistance via cGas-     doi: 10.1016/j.gendis.2023.04.022
               STING pathway in mantle cell lymphoma. Br J Haematol.
               2023;202(3):550-565.                            83.  Zhang W, Ren Z, Jia L, Li X, Jia X, Han Y. Fbxw7 and
                                                                  Skp2 regulate stem cell switch between quiescence and
               doi: 10.1111/bjh.18878                             mitotic division in lung adenocarcinoma. Biomed Res Int.
            73.  McSweeney K, Hoover P, Ramirez-Solano M, Liu Q,   2019;2019:9648269.
               Schwartz JR. Overexpression of human SAMD9 inhibits      doi: 10.1155/2019/9648269
               protein translation and alters MYC signaling resulting in cell
               cycle arrest. Exp Hematol. 2024;137:104249.     84.  Lin H, Ma N, Zhao L, Yang G, Cao B. KDM5c promotes
                                                                  colon cancer cell proliferation through the FBXW7-c-Jun
               doi: 10.1016/j.exphem.2024.104249                  regulatory axis. Front Oncol. 2020;10:535449.
            74.  Hu Z, Wu Y, Sun X, Tong Y, Qiu H, Zhuo E. ARMCX1      doi: 10.3389/fonc.2020.535449
               inhibits lung adenocarcinoma progression by recruiting
               FBXW7 for c-Myc degradation. Biol Direct. 2024;19(1):82.  85.  Meyer AE, Furumo Q, Stelloh C, Minella AC, Rao S. Loss
                                                                  of Fbxw7 triggers mammary tumorigenesis associated
               doi: 10.1186/s13062-024-00532-8                    with E2F/c-Myc activation and Trp53 mutation. Neoplasia.
            75.  Freie B, Carroll PA, Varnum-Finney BJ,  et al. A  germline   2020;22(11):644-658.
               point mutation in the MYC-FBW7 phosphodegron initiates      doi: 10.1016/j.neo.2020.07.001
               hematopoietic malignancies. Genes Dev. 2024;38(5-6):253-272.
                                                               86.  Chen XY, Yan X, Song BY, Sun J, Mu LJ, Li WP. Effects of
               doi: 10.1101/gad.351292.123                        BET bromodomain inhibitor JQ1 on double-expressor
                                                                  lymphoma cell lines and its mechanism. Zhongguo Shi Yan
            76.  Pozzo F, Bittolo T, Tissino E,  et al. Multiple mechanisms
               of NOTCH1 activation in chronic lymphocytic leukemia:   Xue Ye Xue Za Zhi. 2022;30(4):1094-1100.
               NOTCH1 mutations and beyond.  Cancers (Basel).      doi: 10.19746/j.cnki.issn.1009-2137.2022.04.018


            Volume 4 Issue 3 (2025)                         13                           doi: 10.36922/TD025150027
   16   17   18   19   20   21   22   23   24   25   26