Page 21 - TD-4-3
P. 21
Tumor Discovery FBXW7 in Leukemia
66. Chiplunkar SV, Gogoi D. The multifaceted role of Notch 2022;14(12):2997.
signal in regulating T cell fate. Immunol Lett. 2019;206:59-64.
doi: 10.3390/cancers14122997
doi: 10.1016/j.imlet.2019.01.004
77. Luo F, Zhang C, Shi Z, Mao T, Jin LH. Notch signaling
67. Song C, Guo Y, Chen F, Liu W. IRF-1-inhibited lncRNA promotes differentiation, cell death and autophagy in
XIST regulated the osteogenic differentiation via miR-450b/ Drosophila hematopoietic system. Insect Biochem Mol Biol.
FBXW7 axis. Apoptosis. 2023;28(3-4):669-680. 2024;173:104176.
doi: 10.1007/s10495-023-01820-w doi: 10.1016/j.ibmb.2024.104176
68. Liu Z, Liu X, Liu S, Cao Q. Cholesterol promotes the 78. Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM,
migration and invasion of renal carcinoma cells by regulating Pagano M. Human cyclin E, a nuclear protein essential for the
the KLF5/miR-27a/FBXW7 pathway. Biochem Biophys Res G1-to-S phase transition. Mol Cell Biol. 1995;15(5):2612-2624.
Commun. 2018;502(1):69-75. doi: 10.1128/MCB.15.5.2612
doi: 10.1016/j.bbrc.2018.05.122 79. Guo X, Zhang R, Ge Z, et al. Mutations of FBXW7 in adult
69. Sun L. F-box and WD repeat domain-containing 7 T-cell acute lymphocytic leukemia. Zhongguo Shi Yan Xue
(FBXW7) mediates the hypoxia inducible factor-1alpha Ye Xue Za Zhi. 2015;23(3):612-618.
(HIF-1alpha)/vascular endothelial growth factor (VEGF) doi: 10.7534/j.issn.1009-2137.2015.03.002
signaling pathway to affect hypoxic-ischemic brain damage
in neonatal rats. Bioengineered. 2022;13(1):560-572. 80. Bincoletto C, Saad ST, da Silva ES, Queiroz ML.
Haematopoietic response and bcl-2 expression in
doi: 10.1080/21655979.2021.2011635 patients with acute myeloid leukaemia. Eur J Haematol.
70. Yumimoto K, Nakayama KI. Recent insight into the role 1999;62(1):38-42.
of FBXW7 as a tumor suppressor. Semin Cancer Biol. doi: 10.1111/j.1600-0609.1999.tb01112.x
2020;67(Pt 2):1-15.
81. Yang Z, Hu N, Wang W, et al. Loss of FBXW7 correlates with
doi: 10.1016/j.semcancer.2020.02.017 increased IDH1 expression in glioma and enhances IDH1-
71. Elbahoty MH, Papineni B, Samant RS. Multiple myeloma: mutant cancer cell sensitivity to radiation. Cancer Res.
clinical characteristics, current therapies and emerging 2022;82(3):497-509.
innovative treatments targeting ribosome biogenesis doi: 10.1158/0008-5472.CAN-21-0384
dynamics. Clin Exp Metastasis. 2024;41:829-842.
82. He Y, Qi S, Chen L, et al. The roles and mechanisms of
doi: 10.1007/s10585-024-10305-2 SREBP1 in cancer development and drug response. Genes
72. Liang JH, Ren YM, Du KX, et al. MYC-induced cytidine Dis. 2024;11(4):100987.
metabolism regulates survival and drug resistance via cGas- doi: 10.1016/j.gendis.2023.04.022
STING pathway in mantle cell lymphoma. Br J Haematol.
2023;202(3):550-565. 83. Zhang W, Ren Z, Jia L, Li X, Jia X, Han Y. Fbxw7 and
Skp2 regulate stem cell switch between quiescence and
doi: 10.1111/bjh.18878 mitotic division in lung adenocarcinoma. Biomed Res Int.
73. McSweeney K, Hoover P, Ramirez-Solano M, Liu Q, 2019;2019:9648269.
Schwartz JR. Overexpression of human SAMD9 inhibits doi: 10.1155/2019/9648269
protein translation and alters MYC signaling resulting in cell
cycle arrest. Exp Hematol. 2024;137:104249. 84. Lin H, Ma N, Zhao L, Yang G, Cao B. KDM5c promotes
colon cancer cell proliferation through the FBXW7-c-Jun
doi: 10.1016/j.exphem.2024.104249 regulatory axis. Front Oncol. 2020;10:535449.
74. Hu Z, Wu Y, Sun X, Tong Y, Qiu H, Zhuo E. ARMCX1 doi: 10.3389/fonc.2020.535449
inhibits lung adenocarcinoma progression by recruiting
FBXW7 for c-Myc degradation. Biol Direct. 2024;19(1):82. 85. Meyer AE, Furumo Q, Stelloh C, Minella AC, Rao S. Loss
of Fbxw7 triggers mammary tumorigenesis associated
doi: 10.1186/s13062-024-00532-8 with E2F/c-Myc activation and Trp53 mutation. Neoplasia.
75. Freie B, Carroll PA, Varnum-Finney BJ, et al. A germline 2020;22(11):644-658.
point mutation in the MYC-FBW7 phosphodegron initiates doi: 10.1016/j.neo.2020.07.001
hematopoietic malignancies. Genes Dev. 2024;38(5-6):253-272.
86. Chen XY, Yan X, Song BY, Sun J, Mu LJ, Li WP. Effects of
doi: 10.1101/gad.351292.123 BET bromodomain inhibitor JQ1 on double-expressor
lymphoma cell lines and its mechanism. Zhongguo Shi Yan
76. Pozzo F, Bittolo T, Tissino E, et al. Multiple mechanisms
of NOTCH1 activation in chronic lymphocytic leukemia: Xue Ye Xue Za Zhi. 2022;30(4):1094-1100.
NOTCH1 mutations and beyond. Cancers (Basel). doi: 10.19746/j.cnki.issn.1009-2137.2022.04.018
Volume 4 Issue 3 (2025) 13 doi: 10.36922/TD025150027

