Page 79 - AIH-1-2
P. 79

Artificial Intelligence in Health                                     Perspective on AI in eye care practices



               doi: 10.1016/S2589-7500(19)30004-4                 doi: 10.3390/bioengineering10121435
            19.  Shao Y, Jie Y, Liu ZG, et al. Guidelines for the application   31.  Zirar A, Ali IS, Islam M. Worker and workplace artificial
               of artificial intelligence in the diagnosis of anterior segment   intelligence (AI) coexistence: Emerging themes and research
               diseases (2023). Int J Ophthalmol. 2023;16(9):1373-1385.  agenda. Technovation. 2023;124(1):102747.
               doi: 10.18240/ijo.2023.09.03                       doi: 10.1016/j.technovation.2023.102747
            20.  Krishnan G, Singh S, Pathania M, et al. Artificial intelligence   32.  González-Gonzalo C, Thee EF, Klaver CCW,  et al.
               in  clinical  medicine: Catalyzing a  sustainable  global   Trustworthy AI: Closing the gap between development and
               healthcare paradigm. Front Artif Intell. 2023;6:1227091.  integration of AI systems in ophthalmic practice. Prog Retin
                                                                  Eye Res. 2022;90:101034.
               doi: 10.3389/frai.2023.1227091
                                                                  doi: 10.1016/j.preteyeres.2021.101034
            21.  Yoon JH, Pinsky MR, Clermont G. Artificial intelligence in
               critical care medicine. Crit Care. 2022;26(1):75.  33.  Du XL, Li WB, Hu BJ. Application of artificial intelligence in
                                                                  ophthalmology. Int J Ophthalmol. 2018;11(9):1555-1561.
               doi: 10.1186/s13054-022-03915-3
                                                                  doi: 10.18240/ijo.2018.09.21
            22.  Jiang F, Jiang Y, Zhi H,  et al. Artificial intelligence in
               healthcare: Past, present and future.  Stroke Vasc Neurol.   34.  Du HQ, Dai Q, Zhang ZH, et al. Artificial intelligence-aided
               2017;2(4):230-243.                                 diagnosis  and  treatment  in  the  field  of  optometry.  Int J
                                                                  Ophthalmol. 2023;16(9):1406-1416.
               doi: 10.1136/svn-2017-000101
                                                                  doi: 10.18240/ijo.2023.09.06
            23.  Currie G, Hawk KE, Rohren E, Vial A, Klein R. Machine
               learning and deep learning in medical imaging: Intelligent   35.  Peterson L, Larsson I, Nygren JM,  et al. Challenges
               imaging. J Med Imaging Radiat Sci. 2019;50(4):477-487.  to implementing artificial intelligence in healthcare:
                                                                  A  qualitative  interview  study  with  healthcare  leaders  in
               doi: 10.1016/j.jmir.2019.09.005                    Sweden. BMC Health Serv Res. 2022;22(1):850.
            24.  Al-Atari MA. Artificial intelligence for medical diagnostics-     doi: 10.1186/s12913-022-08215-8
               existing and future AI technology!.  Diagnostics  (Basel).
               2023;13(4):688.                                 36.  Cobelli N, Cassia F, Burro R. Factors affecting the choices
                                                                  of  adoption/non-adoption  of  future  technologies  during
               doi: 10.3390/diagnostics13040688                   coronavirus pandemic.  Technol Forecast Soc Change.
                                                                  2021;169:120814.
            25.  Miller DD, Brown EW. How cognitive machines can augment
               medical imaging. AJR Am J Roentgenol. 2019;212(1):9-14.     doi: 10.1016/j.techfore.2021.120814
               doi: 10.2214/AJR.18.19914                       37.  Jedwab RM, Hutchinson AM, Manias E,  et al. Nurse
                                                                  motivation, engagement and well-being before an electronic
            26.  Li H, Cao J, Grzybowski A, Jin K, Lou L, Ye J. Diagnosing   medical record system implementation: A mixed methods
               systemic disorders with AI algorithms based on ocular   study. Int J Environ Res Public Health. 2021;18(5):2726.
               images. Healthcare (Basel). 2023;11(12):1739.
                                                                  doi: 10.3390/ijerph18052726
               doi: 10.3390/healthcare11121739
                                                               38.  Scanzera AC, Shorter E, Kinnaird C,  et al. Optometrist’s
            27.  Tan Y, Sun X. Ocular images-based artificial intelligence on   perspectives of artificial intelligence in eye care. J Optom.
               systemic diseases. Biomed Eng Online. 2023;22(1):49.  2022;15 Suppl 1(Suppl 1):S91-S97.
               doi: 10.1186/s12938-023-01110-1                    doi: 10.1016/j.optom.2022.06.006
            28.  Balyen L, Peto T. Promising artificial intelligence-machine   39.  Gunasekeran DV, Zheng F, Lim GYS,  et al. Acceptance
               learning-deep learning algorithms in ophthalmology. Asia   and  perception  of  artificial  intelligence  usability  in  eye
               Pac J Ophthalmol (Phila). 2019;8(3):264-272.       care (APPRAISE) for ophthalmologists: A  multinational
               doi: 10.22608/APO.2018479                          perspective. Front Med. 2022;9:875242.
            29.  Li H, Cao J, You K, Zhang Y, Ye J. Artificial intelligence-     doi: 10.3389/fmed.2022.875242
               assisted management of retinal detachment from ultra-  40.  Ho S, Doig GS, Ly A. Attitudes of optometrists towards
               widefield fundus images based on weakly-supervised   artificial intelligence for the diagnosis of retinal disease:
               approach. Front Med (Lausanne). 2024;11:1326004.   A cross-sectional mail-out survey. Ophthalmic Physiol Opt.
               doi: 10.3389/fmed.2024.1326004                     2022;42(6):1170-1179.
            30.  Pinto-Coelho L. How artificial intelligence is shaping      doi: 10.1111/opo.13034
               medical imaging technology: A survey of innovations and   41.  Constantin A, Atkinson M, Bernabeu MO,  et  al.
               applications. Bioengineering (Basel). 2023;10(12):1435.  Optometrists’ perspectives regarding artificial intelligence


            Volume 1 Issue 2 (2024)                         73                               doi: 10.36922/aih.2809
   74   75   76   77   78   79   80   81   82   83   84