Page 79 - AIH-1-2
P. 79
Artificial Intelligence in Health Perspective on AI in eye care practices
doi: 10.1016/S2589-7500(19)30004-4 doi: 10.3390/bioengineering10121435
19. Shao Y, Jie Y, Liu ZG, et al. Guidelines for the application 31. Zirar A, Ali IS, Islam M. Worker and workplace artificial
of artificial intelligence in the diagnosis of anterior segment intelligence (AI) coexistence: Emerging themes and research
diseases (2023). Int J Ophthalmol. 2023;16(9):1373-1385. agenda. Technovation. 2023;124(1):102747.
doi: 10.18240/ijo.2023.09.03 doi: 10.1016/j.technovation.2023.102747
20. Krishnan G, Singh S, Pathania M, et al. Artificial intelligence 32. González-Gonzalo C, Thee EF, Klaver CCW, et al.
in clinical medicine: Catalyzing a sustainable global Trustworthy AI: Closing the gap between development and
healthcare paradigm. Front Artif Intell. 2023;6:1227091. integration of AI systems in ophthalmic practice. Prog Retin
Eye Res. 2022;90:101034.
doi: 10.3389/frai.2023.1227091
doi: 10.1016/j.preteyeres.2021.101034
21. Yoon JH, Pinsky MR, Clermont G. Artificial intelligence in
critical care medicine. Crit Care. 2022;26(1):75. 33. Du XL, Li WB, Hu BJ. Application of artificial intelligence in
ophthalmology. Int J Ophthalmol. 2018;11(9):1555-1561.
doi: 10.1186/s13054-022-03915-3
doi: 10.18240/ijo.2018.09.21
22. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in
healthcare: Past, present and future. Stroke Vasc Neurol. 34. Du HQ, Dai Q, Zhang ZH, et al. Artificial intelligence-aided
2017;2(4):230-243. diagnosis and treatment in the field of optometry. Int J
Ophthalmol. 2023;16(9):1406-1416.
doi: 10.1136/svn-2017-000101
doi: 10.18240/ijo.2023.09.06
23. Currie G, Hawk KE, Rohren E, Vial A, Klein R. Machine
learning and deep learning in medical imaging: Intelligent 35. Peterson L, Larsson I, Nygren JM, et al. Challenges
imaging. J Med Imaging Radiat Sci. 2019;50(4):477-487. to implementing artificial intelligence in healthcare:
A qualitative interview study with healthcare leaders in
doi: 10.1016/j.jmir.2019.09.005 Sweden. BMC Health Serv Res. 2022;22(1):850.
24. Al-Atari MA. Artificial intelligence for medical diagnostics- doi: 10.1186/s12913-022-08215-8
existing and future AI technology!. Diagnostics (Basel).
2023;13(4):688. 36. Cobelli N, Cassia F, Burro R. Factors affecting the choices
of adoption/non-adoption of future technologies during
doi: 10.3390/diagnostics13040688 coronavirus pandemic. Technol Forecast Soc Change.
2021;169:120814.
25. Miller DD, Brown EW. How cognitive machines can augment
medical imaging. AJR Am J Roentgenol. 2019;212(1):9-14. doi: 10.1016/j.techfore.2021.120814
doi: 10.2214/AJR.18.19914 37. Jedwab RM, Hutchinson AM, Manias E, et al. Nurse
motivation, engagement and well-being before an electronic
26. Li H, Cao J, Grzybowski A, Jin K, Lou L, Ye J. Diagnosing medical record system implementation: A mixed methods
systemic disorders with AI algorithms based on ocular study. Int J Environ Res Public Health. 2021;18(5):2726.
images. Healthcare (Basel). 2023;11(12):1739.
doi: 10.3390/ijerph18052726
doi: 10.3390/healthcare11121739
38. Scanzera AC, Shorter E, Kinnaird C, et al. Optometrist’s
27. Tan Y, Sun X. Ocular images-based artificial intelligence on perspectives of artificial intelligence in eye care. J Optom.
systemic diseases. Biomed Eng Online. 2023;22(1):49. 2022;15 Suppl 1(Suppl 1):S91-S97.
doi: 10.1186/s12938-023-01110-1 doi: 10.1016/j.optom.2022.06.006
28. Balyen L, Peto T. Promising artificial intelligence-machine 39. Gunasekeran DV, Zheng F, Lim GYS, et al. Acceptance
learning-deep learning algorithms in ophthalmology. Asia and perception of artificial intelligence usability in eye
Pac J Ophthalmol (Phila). 2019;8(3):264-272. care (APPRAISE) for ophthalmologists: A multinational
doi: 10.22608/APO.2018479 perspective. Front Med. 2022;9:875242.
29. Li H, Cao J, You K, Zhang Y, Ye J. Artificial intelligence- doi: 10.3389/fmed.2022.875242
assisted management of retinal detachment from ultra- 40. Ho S, Doig GS, Ly A. Attitudes of optometrists towards
widefield fundus images based on weakly-supervised artificial intelligence for the diagnosis of retinal disease:
approach. Front Med (Lausanne). 2024;11:1326004. A cross-sectional mail-out survey. Ophthalmic Physiol Opt.
doi: 10.3389/fmed.2024.1326004 2022;42(6):1170-1179.
30. Pinto-Coelho L. How artificial intelligence is shaping doi: 10.1111/opo.13034
medical imaging technology: A survey of innovations and 41. Constantin A, Atkinson M, Bernabeu MO, et al.
applications. Bioengineering (Basel). 2023;10(12):1435. Optometrists’ perspectives regarding artificial intelligence
Volume 1 Issue 2 (2024) 73 doi: 10.36922/aih.2809

