Page 31 - AIH-1-3
P. 31

Artificial Intelligence in Health                                           Optimizing EHRs to support AI



            76.  eHAction.  Common Semantic Strategy for Health in the   87.  Atalag K, Bilgen S.  Multi-level Modeling and the Role of
               European Union; 2019 Available from: http://ehaction.eu/  Archetypes in the Design of Health Information Systems:
               eu-common-semantic-strategy-open-consultation  [Last  A Modeling Example in Endoscopy. In: Conference proceedings
               accessed on 2024 Feb 28].                          of the 2007 International Symposium on Health Informatics
                                                                  and Bioinformatics HIBIT07, Atalya, Turkey.
            77.  CODE-Center-for-Open-Data-Enterprise.  Sharing and
               Utilizing Health Data for AI Applications-Round Table      doi: 10.13140/2.1.4762.2727
               Report; 2019. Available from: https://www.hhs.gov/sites/  88.  Viceconti M, De Vos M, Mellone S, Geris L. Position paper
               default/files/sharing-and-utilizing-health-data-for-ai-  from the digital twins in healthcare to the virtual human
               applications.pdf [Last accessed on 2024 Feb 22].   twin: A moon-shot project for digital health research. IEEE J
            78.  ISO13606.  The ISO 13606 Standard Explained; 2019.   Biomed Health Inform. 2023;28:491-501.
               Available from: http://www.en13606.org/information.html      doi: 10.1109/JBHI.2023.3323688
               [Last accessed on 2024 Feb 18].
                                                               89.  Nickerson D, Atalag K, De Bono B,  et al. The human
            79.  OpenEHR.   Specifications.  Available  from:  https://  physiome: How standards, software and innovative service
               specifications.openehr.org [Last accessed on 2021 Apr 25].  infrastructures are providing the building blocks to make it
            80.  Atalag K, Beale T, Chen R, Gornik T, Heard S, McNicoll I.   achievable. Interface Focus. 2016;6(2):20150103.
               OpenEHR-A Semantically-Enabled, Vendor-Independent      doi: 10.1098/rsfs.2015.0103
               Health Computing Platform-White Paper;  2017. Avaialble
               from:   https://www.openehr.org/resources/white_paper_  90.  Teno JM. Garbage in, Garbage out-words of caution on
               docs/openEHR_vendor_independent_platform.pdf  [Last  big data and machine learning in medical practice. JAMA
               accessed on 2017 Feb 17].                          Health Forum. 2023;4(2):e230397.
            81.  ISO-13606-1. Health Informatics--Electronic Health Record      doi: 10.1001/jamahealthforum.2023.0397
               Communication--Part 1: Reference Model. Switzerland: ISO;   91.  Institute of Medicine Committee on Quality of Health Care
               2019.  Available from https://www.iso.org/standard/67868.  in America.  Crossing the Quality Chasm: A  New Health
               html [Last accessed on 2017 Feb 18].               System for the 21   Century. Washington, DC: National
                                                                                st
            82.  Beale T. Archetypes: Constraint-based domain models   Academies Press.
               for future-proof information systems. In: Baclawski K,   92.  ISO/TR14639. Briefing Note: Strengthening National Health
               Kilov H, editors. Eleventh OOPSLA Workshop on Behavioral   Systems through a Capacity-Based eHealth Architecture.
               Semantics: Serving the Customer. Boston: Northeastern   Switzerland: International Organization of Standards ISO;
               University; 2002.                                  2014. Available from: https://www.iso.org/files/live/sites/
                                                                  isoorg/files/archive/pdf/en/14639-brochureversionv7.pdf
            83.  Ma C, Frankel H, Beale T, Heard S. EHR query language
               (EQL)--a query language for archetype-based health records.   [Last accessed on 2020 Jul 18].
               Stud Health Technol Inform. 2007;129(Pt 1):397-401.  93.  PATH.  Data Use partnerships: Theory of Change; 2016.
                                                                  Available  from:   https://www.path.org/our-impact/
            84.  OpenEHR.  Archetype  Query Language (AQL).  Available
               from:   https://specifications.openehr.org/releases/query/  resources/data-use-partnership-theory-of-change  [Last
               latest/aql.html [Last accessed on 2019 Feb 12].    accessed on 2021 Jul 22].
                                                               94.  Castro A, Machado J, Roggendorf M, Soller H.  How to
            85.  Chen R, Valladares C, Corbal I, Anani N, Koch S. Early   build a data  architecture to Drive Innovation-Today and
               experiences from a guideline-based computerized clinical   Tomorrow. McKinsey Technology; 2021. Available from:
               decision support for stroke prevention in atrial fibrillation.   https://www.mckinsey.com/business-functions/mckinsey-
               Stud Health Technol Inform. 2013;192:244-247.
                                                                  digital/our-insights/how-to-build-a-data-architecture-to-
            86.  Garde S. Clinical knowledge governance: The international   drive-innovation-today-and-tomorrow [Last accessed on
               perspective. Stud Health Technol Inform. 2013;193:269-281.  2021 Apr 12].


















            Volume 1 Issue 3 (2024)                         25                               doi: 10.36922/aih.3056
   26   27   28   29   30   31   32   33   34   35   36