Page 11 - AIH-1-4
P. 11

Artificial Intelligence in Health                                      Radiomics in early-stage lung cancer







                          Oncological outcomes  Seven AIP radiomics features   were associated with DM   (CI: 0.638±0.676)  LR model AUC   (CI): OS: 0.88 (0.78 – 0.97)  RFS: 0.86 (0.76 – 0.96)  LR-RFS: 0.85 (0.74 – 0.95)  AUC values of 0.72±0.04,  0.83±0.03, and 0.60±0.04, for  recurrence, local recurrence, and  non-local recurrence, respectively  CI values for LR in clinical,  radiomics, and combined models   were 0.57 (0.39 – 0.75),   0.55 (0.38 – 0.73), and  0.61 (0.43










                          Algorithm/statistical   method used  Univariate and   multivariate analyses  LR  Multivariable LR   models   RSF  LR, DT, SVM  Multiple linear   regression  Kaplan–Meier analysis   and log-rank test









                          Important radiomics   identification method  PCA and factor analysis   (FactoMineR package)  Pearson’s correlation  SVD, LASSO  Adaptive LASSO  LASSO  Regression model  LASSO









                          Number of   significant   radiomics features  19  166  2  16  4  4 (OS)  2 (LRFS)  3 (PFS)  5 Abbreviations: FB: Free breathing; AIP: Average intensity projection; PCA: Principal component analysis; DM: Distant metastasis; CI: Concordance index; LASSO: Least absolute shrinkage and  selection operator; RSF: Random survival forest; OS: Overall survival; LRFS: Local relapse-free survival; PFS: Progression-free survival; LR: Logistic regression; DT:







                      Table 1. SBRT response prediction studies using CT‑based radiomics
                          Number of radiomics   features and radiomics   extraction method  644, MATLAB 2013 toolbox  219, Definiens Developer  43, MATLAB  944, PyRadiomics Ver. 2.2.0  1502, PyRadiomics  107, PyRadiomics v3.0.1  432, MATLAB-based   Radiomics tools  package vector machine; LC: Local control; MFS: Metastasis-free survival; SVD: Singular value decomposition; LR-RFS: Locoregional recurrence-free survival.









                          Number   of patients  112  59  70  573          119      358   125






                          Imaging   method used  FB CT and AIP   CT  Follow-up thorax   CT after SBRT  FB planning CT  Breath-hold   planning CT   FB planning CT  FB planning CT   FB planning CT




                          Study and year  Huynh et al., 2017 9  Li et al., 2017 15  Lafata et al., 2019 14  Kakino et al., 2020 10  Luo et al., 2022 12  Sawayanagi et al.,   2022 11  Isoyama-Shirakawa   et al., 2023 13







            Volume 1 Issue 4 (2024)                         5                                doi: 10.36922/aih.3541
   6   7   8   9   10   11   12   13   14   15   16