Page 16 - AIH-1-4
P. 16

Artificial Intelligence in Health                                      Radiomics in early-stage lung cancer



               radiation therapy. Radiat Oncol. 2015;10:100.   29.  Lorenz JW, Schott D, Rein L,  et al. Serial T2-weighted
                                                                  magnetic resonance images acquired on a 1.5 tesla magnetic
               doi: 10.1186/s13014-015-0407-7
                                                                  resonance linear accelerator reveal radiomic feature
            20.  Dissaux G, Visvikis D, Da-Ano R,  et al. Pretreatment   variation in organs at risk: An exploratory analysis of
               18 F-FDG PET/CT radiomics predict local recurrence in   novel metrics of tissue response in prostate cancer. Cureus.
               patients treated with stereotactic body radiotherapy for   2019;11(4):e4510.
               early-stage non-small cell lung cancer: A multicentric study.
               J Nucl Med. 2020;61(6):814-820.                    doi: 10.7759/cureus.4510
               doi: 10.2967/jnumed.119.228106                  30.  Mazzei MA, Nardone V, Di Giacomo L, et al. The role of
                                                                  delta radiomics in gastric cancer. Quant Imaging Med Surg.
            21.  Oikonomou A, Khalvati F, Tyrrell PN,  et al. Radiomics   2018;8(7):719-721.
               analysis at PET/CT contributes to prognosis of recurrence
               and survival in lung cancer treated with stereotactic body      doi: 10.21037/qims.2018.07.08
               radiotherapy. Sci Rep. 2018;8(1):4003.          31.  Ravanelli M, Agazzi GM, Tononcelli E, et al. Texture features
               doi: 10.1038/s41598-018-22357-y                    of colorectal liver metastases on pretreatment contrast-
                                                                  enhanced CT may predict response and prognosis in patients
            22.  Lucia F, Louis T, Cousin F, et al. Multicentric development   treated with bevacizumab-containing chemotherapy: A pilot
                               18
               and evaluation of [ F]FDG PET/CT and CT radiomic   study including comparison with standard chemotherapy.
               models to predict regional and/or distant recurrence in   Radiol Med. 2019;124(9):877-886.
               early-stage non-small cell lung cancer treated by stereotactic
               body radiation therapy.  Eur J Nucl Med Mol Imaging.      doi: 10.1007/s11547-019-01046-4
               2024;51(4):1097-1108.                           32.  Fave X, Zhang L, Yang J, et al. Delta-radiomics features for
               doi: 10.1007/s00259-023-06510-y                    the prediction of patient outcomes in non-small cell lung
                                                                  cancer. Sci Rep. 2017;7(1):588.
            23.  Nemoto H, Saito M, Satoh Y,  et al. Evaluation of the
               performance of both machine learning models using PET   doi: 10.1038/s41598-017-00665-z
               and CT radiomics for predicting recurrence following lung   33.  Ma Y, Ma W, Xu X, Cao F. How does the delta-radiomics
               stereotactic body radiation therapy: A  single-institutional   better differentiate pre-invasive GGNs from invasive GGNs?
               study. J Appl Clin Med Phys. 2024;25:e14322.       Front Oncol. 2020;10:1017.
               doi: 10.1002/acm2.14322                            doi: 10.3389/fonc.2020.01017
            24.  Zhang YP, Zhang XY, Cheng YT, et al. Artificial intelligence-  34.  Nasief H, Zheng C, Schott D, et al. A machine learning based
               driven radiomics study in cancer: The role of feature   delta-radiomics process for early prediction of treatment
               engineering and modeling. Mil Med Res. 2023;10(1):22.  response of pancreatic cancer. NPJ Precis Oncol. 2019;3:25.
               doi: 10.1186/s40779-023-00458-8                    doi: 10.1038/s41698-019-0096-z
            25.  Shen C, Liu Z, Guan M,  et al. 2D and 3D CT radiomics   35.  Lin P, Yang PF, Chen S,  et al. A  Delta-radiomics model
               features prognostic performance comparison in non-small   for preoperative evaluation of neoadjuvant chemotherapy
               cell lung cancer. Transl Oncol. 2017;10(6):886-894.  response in high-grade osteosarcoma.  Cancer Imaging.
               doi: 10.1016/j.tranon.2017.08.007                  2020;20(1):7.
            26.  Zhu Y, Yao W, Xu BC,  et al. Predicting response to      doi: 10.1186/s40644-019-0283-8
               immunotherapy  plus  chemotherapy  in  patients  with   36.  Liu Y, Wu M, Zhang Y, et al. Imaging biomarkers to predict
               esophageal squamous cell carcinoma using non-invasive   and evaluate the effectiveness of immunotherapy in advanced
               radiomic biomarkers. BMC Cancer. 2021;21(1):1167.  non-small-cell lung cancer. Front Oncol. 2021;11:657615.
               doi: 10.1186/s12885-021-08899-x                    doi: 10.3389/fonc.2021.657615
            27.  Avanzo M, Wei L, Stancanello J,  et al. Machine and   37.  Colen RR, Rolfo C, Ak M,  et al. Radiomics analysis
               deep learning methods for radiomics.  Med Phys.    for predicting pembrolizumab response in patients
               2020;47(5):e185-e202.
                                                                  with advanced rare cancers.  J  Immunother Cancer.
               doi: 10.1002/mp.13678                              2021;9(4):e001752.
            28.  Gao Y, Kalbasi A, Hsu W, et al. Treatment effect prediction      doi: 10.1136/jitc-2020-001752
               for sarcoma patients treated with preoperative radiotherapy   38.  Fatima K, Dasgupta A, DiCenzo D, et al. Ultrasound delta-
               using radiomics features from longitudinal diffusion-  radiomics during radiotherapy to predict recurrence in
               weighted MRIs. Phys Med Biol. 2020;65(17):175006.
                                                                  patients with head and neck squamous cell carcinoma. Clin
               doi: 10.1088/1361-6560/ab9e58                      Transl Radiat Oncol. 2021;28:62-70.



            Volume 1 Issue 4 (2024)                         10                               doi: 10.36922/aih.3541
   11   12   13   14   15   16   17   18   19   20   21