Page 16 - AIH-1-4
P. 16
Artificial Intelligence in Health Radiomics in early-stage lung cancer
radiation therapy. Radiat Oncol. 2015;10:100. 29. Lorenz JW, Schott D, Rein L, et al. Serial T2-weighted
magnetic resonance images acquired on a 1.5 tesla magnetic
doi: 10.1186/s13014-015-0407-7
resonance linear accelerator reveal radiomic feature
20. Dissaux G, Visvikis D, Da-Ano R, et al. Pretreatment variation in organs at risk: An exploratory analysis of
18 F-FDG PET/CT radiomics predict local recurrence in novel metrics of tissue response in prostate cancer. Cureus.
patients treated with stereotactic body radiotherapy for 2019;11(4):e4510.
early-stage non-small cell lung cancer: A multicentric study.
J Nucl Med. 2020;61(6):814-820. doi: 10.7759/cureus.4510
doi: 10.2967/jnumed.119.228106 30. Mazzei MA, Nardone V, Di Giacomo L, et al. The role of
delta radiomics in gastric cancer. Quant Imaging Med Surg.
21. Oikonomou A, Khalvati F, Tyrrell PN, et al. Radiomics 2018;8(7):719-721.
analysis at PET/CT contributes to prognosis of recurrence
and survival in lung cancer treated with stereotactic body doi: 10.21037/qims.2018.07.08
radiotherapy. Sci Rep. 2018;8(1):4003. 31. Ravanelli M, Agazzi GM, Tononcelli E, et al. Texture features
doi: 10.1038/s41598-018-22357-y of colorectal liver metastases on pretreatment contrast-
enhanced CT may predict response and prognosis in patients
22. Lucia F, Louis T, Cousin F, et al. Multicentric development treated with bevacizumab-containing chemotherapy: A pilot
18
and evaluation of [ F]FDG PET/CT and CT radiomic study including comparison with standard chemotherapy.
models to predict regional and/or distant recurrence in Radiol Med. 2019;124(9):877-886.
early-stage non-small cell lung cancer treated by stereotactic
body radiation therapy. Eur J Nucl Med Mol Imaging. doi: 10.1007/s11547-019-01046-4
2024;51(4):1097-1108. 32. Fave X, Zhang L, Yang J, et al. Delta-radiomics features for
doi: 10.1007/s00259-023-06510-y the prediction of patient outcomes in non-small cell lung
cancer. Sci Rep. 2017;7(1):588.
23. Nemoto H, Saito M, Satoh Y, et al. Evaluation of the
performance of both machine learning models using PET doi: 10.1038/s41598-017-00665-z
and CT radiomics for predicting recurrence following lung 33. Ma Y, Ma W, Xu X, Cao F. How does the delta-radiomics
stereotactic body radiation therapy: A single-institutional better differentiate pre-invasive GGNs from invasive GGNs?
study. J Appl Clin Med Phys. 2024;25:e14322. Front Oncol. 2020;10:1017.
doi: 10.1002/acm2.14322 doi: 10.3389/fonc.2020.01017
24. Zhang YP, Zhang XY, Cheng YT, et al. Artificial intelligence- 34. Nasief H, Zheng C, Schott D, et al. A machine learning based
driven radiomics study in cancer: The role of feature delta-radiomics process for early prediction of treatment
engineering and modeling. Mil Med Res. 2023;10(1):22. response of pancreatic cancer. NPJ Precis Oncol. 2019;3:25.
doi: 10.1186/s40779-023-00458-8 doi: 10.1038/s41698-019-0096-z
25. Shen C, Liu Z, Guan M, et al. 2D and 3D CT radiomics 35. Lin P, Yang PF, Chen S, et al. A Delta-radiomics model
features prognostic performance comparison in non-small for preoperative evaluation of neoadjuvant chemotherapy
cell lung cancer. Transl Oncol. 2017;10(6):886-894. response in high-grade osteosarcoma. Cancer Imaging.
doi: 10.1016/j.tranon.2017.08.007 2020;20(1):7.
26. Zhu Y, Yao W, Xu BC, et al. Predicting response to doi: 10.1186/s40644-019-0283-8
immunotherapy plus chemotherapy in patients with 36. Liu Y, Wu M, Zhang Y, et al. Imaging biomarkers to predict
esophageal squamous cell carcinoma using non-invasive and evaluate the effectiveness of immunotherapy in advanced
radiomic biomarkers. BMC Cancer. 2021;21(1):1167. non-small-cell lung cancer. Front Oncol. 2021;11:657615.
doi: 10.1186/s12885-021-08899-x doi: 10.3389/fonc.2021.657615
27. Avanzo M, Wei L, Stancanello J, et al. Machine and 37. Colen RR, Rolfo C, Ak M, et al. Radiomics analysis
deep learning methods for radiomics. Med Phys. for predicting pembrolizumab response in patients
2020;47(5):e185-e202.
with advanced rare cancers. J Immunother Cancer.
doi: 10.1002/mp.13678 2021;9(4):e001752.
28. Gao Y, Kalbasi A, Hsu W, et al. Treatment effect prediction doi: 10.1136/jitc-2020-001752
for sarcoma patients treated with preoperative radiotherapy 38. Fatima K, Dasgupta A, DiCenzo D, et al. Ultrasound delta-
using radiomics features from longitudinal diffusion- radiomics during radiotherapy to predict recurrence in
weighted MRIs. Phys Med Biol. 2020;65(17):175006.
patients with head and neck squamous cell carcinoma. Clin
doi: 10.1088/1361-6560/ab9e58 Transl Radiat Oncol. 2021;28:62-70.
Volume 1 Issue 4 (2024) 10 doi: 10.36922/aih.3541

