Page 168 - {PDF Title}
P. 168

Mhaske and Kumar

                 Table 7. Attack analysis on privacy preservation with blockchain technology
                 Type of attack   Data     STO       TSA      PFO     SBOA       BA      EHO-    BFL-PSO    STI-TSA
                                variation                                                OBL
                                  (%)
                 Chosen            10     0.351921 0.339407  0.34287  0.365965 0.349648  0.37791  0.367569  0.253009
                 ciphertext attack  20    0.339255 0.308546 0.302815 0.312861 0.305106 0.341916  0.324134   0.240593

                                   30     0.294249 0.286082 0.292351 0.290481 0.292558 0.323516  0.304436   0.227043
                 Chosen-plaintext   10    0.377369 0.311311 0.382294 0.329612 0.374634 0.367101  0.405775   0.257965
                 attack            20     0.357544 0.296104 0.373377 0.306939 0.326005 0.336375   0.38882   0.231773
                                   30     0.334005 0.285204 0.355613 0.293705 0.295356 0.298582   0.37005   0.213351
                 Known             10     0.345052  0.32823  0.340936 0.356009 0.347683 0.362589  0.372112  0.257533
                 ciphertext attack  20    0.322449 0.311838 0.333301 0.327906 0.331565 0.329808  0.340978   0.236284
                                   30     0.293598  0.28121  0.329029 0.298151 0.317375 0.304013  0.32031   0.218906
                 Known-plaintext   10     0.358404 0.349322 0.362844 0.399397 0.391895 0.351093  0.333991   0.214906
                 attack            20     0.333724 0.315239 0.350371 0.382028 0.373978 0.342707   0.30128   0.192158
                                   30     0.262814 0.256571 0.308598 0.316097 0.321592 0.269359  0.279833   0.171256
                 Message           10     0.431751 0.404186 0.437191 0.395072 0.435468 0.445301  0.430577   0.30485
                 tampering attack   20    0.386429 0.363971 0.403125 0.362718 0.472377 0.401626  0.397691   0.283366
                                   30     0.316525 0.305065 0.335472 0.309952 0.332473 0.342722  0.330549   0.269973
                 Eavesdropping     10     0.424193 0.344404 0.412145 0.436951  0.43424   0.4271   0.36815   0.307106
                 attack            20     0.358123 0.329038 0.358288 0.395517 0.365027  0.34271  0.339393   0.293574

                                   30     0.318197 0.302423 0.332521 0.348741 0.332513 0.310608  0.311976   0.272066
                 Abbreviations: BA: Bat Algorithm; BFL-PSO: Bee-foraging learning particle swarm optimization; EHO-OBL: Elephant Herding
                 Optimization with Opposition-based Learning; PFO: Puffer Fish Optimization; SBOA: Secretary Bird Optimization Algorithm;
                 STO: Siberian Tiger Optimization; TSA: Tuna Swarm algorithm.

                values  of approximately  0.269973 and  0.272066,    Table 8. Data sanitization analysis on privacy
                respectively.                                        preservation of electronic health records with
                                                                     blockchain technology
                8.5. Data sanitization and restoration analysis      Methods         10%          20%         30%
                Restoration  signifies  the  reconstructing  or  recovery
                of data and systems to their original state after loss   STO       0.389357     0.389299     0.352917
                or corruption. When combined, they provide system    TSA           0.423491     0.380429     0.33179
                recovery, data integrity, and privacy protection. The   PFO        0.424748     0.400766     0.344319
                sanitization analysis and restoration analysis are shown   SBOA    0.394453     0.372241     0.343102
                in Tables 8 and 9, respectively. For better PP of EHR,   BA        0.393901     0.363528     0.347302
                the  sanitization  values  must  be  lowered  to  confirm   EHO-OBL  0.428647   0.410471     0.397624
                slight alteration of sensitive data. In contrast, the values
                of restoration must be high to enable accurate retrieval   BFL-PSO  0.409735    0.39719      0.368462
                of original data. This statement is well accomplished   STI-TSA    0.306117     0.287711     0.261784
                by the proposed STI-TSA with improved  ARM. In       Abbreviations: BA: Bat  Algorithm; BFL-PSO: Bee-foraging
                Table 8, STI-TSA with improved  ARM reveals a        learning  particle  swarm optimization;  EHO-OBL: Elephant
                minimal sanitization value of 0.2617 for data at 30%.   Herding Optimization  with Opposition-based Learning;
                                                                     PFO:  Puffer  Fish  Optimization;  SBOA:  Secretary  Bird
                At the same time, STO,  TSA, PFO, SBOA, BA,          Optimization Algorithm; STO: Siberian Tiger Optimization; TSA:
                EHO-OBL,  and BFL-PSO  attain high sanitization      Tuna Swarm algorithm.
                                         35
                          34
                values of 0.352917, 0.33179, 0.344319, 0.343102,
                0.347302, 0.397624, and  0.368462, respectively. In   improved  ARM obtains a high value of 0.953422,
                the case of restoration, the proposed STI-TSA with   while extant methods show lower restoration values.




                Volume 22 Issue 1 (2025)                       162                           doi: 10.36922/AJWEP025040017
   163   164   165   166   167   168   169   170   171   172   173