Page 19 - AJWEP-v22i3
P. 19
Standardising plastic terminology
79. Gündoğdu S, editor. Plastic Waste Trade. Switzerland: 91. Knight LJ, Parker-Jurd FNF, Al-Sid-Cheikh M,
Springer Nature; 2024. Thompson RC. Tyre wear particles: An abundant yet
doi: 10.1007/978-3-031-51358-9 widely unreported microplastic? Environ Sci Pollut Res.
80. Green DS, Almroth BC, Altman R, et al. Time to kick 2020;27(15):18345-18354.
the butt of the most common litter item in the world: Ban doi: 10.1007/s11356-020-08187-4
cigarette filters. Sci Total Environ. 2023;865:161256. 92. Andersson-Sköld Y, Johanesson M, Gustafsson M, et al.
doi: 10.1016/j.scitotenv.2022.161256 Microplastics from Tyre and Road Wear - A Literature
81. Belzagui F, Buscio V, Gutiérrez-Bouzán C, Vilaseca M. Review. Swedish National Road and Transport Research
Cigarette butts as a microfiber source with a microplastic Institute; 2020. Available from: https://www.vti.se [Last
level of concern. Sci Total Environ. 2021;762:144165. accessed on 2021 Mar 23].
doi: 10.1016/j.scitotenv.2020.144165 93. Iroegbu AO, Ray SS. Lignin and keratin-based materials
82. Novotny TE, Lum K, Smith E, Wang V, Barnes R. in transient devices and disposables: Recent advances
Cigarettes butts and the case for an environmental policy toward materials and environmental sustainability. ACS
on hazardous cigarette waste. Int J Environ Res Public Omega. 2022;7(13):10854-10863.
Health. 2009;6(5):1691-1705. doi: 10.1021/acsomega.1c07372
doi: 10.3390/ijerph6051691 94. Iroegbu AOC, Ray SS. Nanocellulosics in transient
83. Stanton T, Johnson M, Nathanail P, MacNaughtan W, technology. ACS Omega. 2022;7(51):47547-47566.
Gomes RL. Freshwater and airborne textile fibre doi: 10.1021/acsomega.2c05848
populations are dominated by ‘natural’, not microplastic, 95. Chandrasekaran SR, Avasarala S, Murali D, Rajagopalan N,
fibres. Sci Total Environ. 2019;666:377-389. Sharma BK. Materials and energy recovery from e-waste
doi: 10.1016/j.scitotenv.2019.02.278 plastics. ACS Sustain Chem Eng. 2018;6(4):4594-4602.
84. Sillanpää M, Sainio P. Release of polyester and cotton doi: 10.1021/acssuschemeng.7b03282
fibers from textiles in machine washings. Environ Sci 96. Tian Y, Chen C, Sagoe-Crentsil K, Zhang J, Duan W.
Pollut Res Int. 2017;24(23):19313-19321. Intelligent robotic systems for structural health
doi: 10.1007/s11356-017-9621-1 monitoring: Applications and future trends. Autom
85. Luo Z, Zhou X, Su Y, et al. Environmental occurrence, Constr. 2022;139:104273.
fate, impact, and potential solution of tire microplastics: doi: 10.1016/j.autcon.2022.104273
Similarities and differences with tire wear particles. Sci 97. Onat NC, Kucukvar M. A systematic review on
Total Environ. 2021;795:148902. sustainability assessment of electric vehicles: Knowledge
doi: 10.1016/j.scitotenv.2021.148902 gaps and future perspectives. Environ Impact Assess Rev.
86. Rauert C, Vardy S, Daniell B, Charlton N, Thomas KV. 2022;97:106867.
Tyre additive chemicals, tyre road wear particles and doi: 10.1016/j.eiar.2022.106867
high production polymers in surface water at 5 urban 98. Daniela-Abigail HL, Tariq R, El Mekaoui A, et al. Does
centres in Queensland, Australia. Sci Total Environ. recycling solar panels make this renewable resource
2022;852:158468. sustainable? Evidence supported by environmental,
doi: 10.1016/j.scitotenv.2022.158468 economic, and social dimensions. Sustain Cities Soc.
87. Goßmann I, Herzke D, Held A, et al. Occurrence and 2022;77:103539.
backtracking of microplastic mass loads including tire doi: 10.1016/j.scs.2021.103539
wear particles in northern Atlantic air. Nat Commun. 99. Sodhi M, Banaszek L, Magee C, Rivero-Hudec M.
2023;14(1):3707. Economic lifetimes of solar panels. Procedia
doi: 10.1038/s41467-023-39340-5 CIRP. 2022;105:782-787.
88. Malizia A, Monmany-Garzia AC. Terrestrial ecologists doi: 10.1016/j.procir.2022.02.130
should stop ignoring plastic pollution in the anthropocene 100. Ghosh K, Jones BH. Roadmap to biodegradable plastics-
time. Sci Total Environ. 2019;668:1025-1029. current State and research needs. ACS Sustain Chem
doi: 10.1016/j.scitotenv.2019.03.044 Eng. 2021;9(18):6170-6187.
89. De Souza Machado AA, Kloas W, Zarfl C, Hempel S, doi: 10.1021/acssuschemeng.1c00801
Rillig MC. Microplastics as an emerging threat to 101. Innocenti FD. Biodegradability and compostability. In:
terrestrial ecosystems. Glob Chang Biol. 2018;24(4): Chiellini E, Solaro R, editors. Biodegradable Polymers
1405-1416. and Plastics. 1 ed., Vol. 1. United States: Springer;
st
doi: 10.1111/gcb.14020 2003. p. 33-45.
90. Kole PJ, Löhr AJ, Van Belleghem FG, Ragas AM. Wear doi: 10.1007/978-1-4419-9240-6_2
and tear of tyres: A stealthy source of microplastics 102. Emadian SM, Onay TT, Demirel B. Biodegradation
in the environment. Int J Environ Res Public Health. of bioplastics in natural environments. Waste Manag.
2017;14(10):1265. 2017;59:526-536.
doi: 10.3390/ijerph14101265 doi: 10.1016/j.wasman.2016.10.006
Volume 22 Issue 3 (2025) 13 doi: 10.36922/AJWEP025200158