Page 56 - AN-4-1
P. 56

Advanced Neurology                                                     LLPS in neurodegenerative diseases



               orchestrate TDP-43 homeostasis  through  condensate   separation. Cell Mol Life Sci. 2022;79(7):380.
               formation in vivo. Nucleic Acids Res. 2024;52(9):5301-5319.
                                                                  doi: 10.1007/s00018-022-04393-0
               doi: 10.1093/nar/gkae112
                                                               66.  Cha  SJ,  Lee  S,  Choi  HJ,  et al.  Therapeutic  modulation
            55.  Mee Hayes E, Sirvio L, Ye Y. A  potential mechanism for   of GSTO activity rescues  FUS-associated neurotoxicity
               targeting aggregates with proteasomes and disaggregases in   via deglutathionylation in ALS disease models.  Dev Cell.
               liquid droplets. Front Aging Neurosci. 2022;14:854380.  2022;57(6):783-798.e8.
               doi: 10.3389/fnagi.2022.854380                     doi: 10.1016/j.devcel.2022.02.022
            56.  Riley JF, Fioramonti PJ, Rusnock AK, Hehnly H,   67.  Savastano A, Flores D, Kadavath H, Biernat J, Mandelkow  E,
               Castañeda   CA. ALS-linked mutations impair UBQLN2   Zweckstetter M. Disease-associated tau phosphorylation
               stress-induced  biomolecular  condensate  assembly  in  cells.   hinders tubulin assembly within tau condensates.  Angew
               J Neurochem. 2021;159:145-155.                     Chem Int Ed Engl. 2021;60(2):726-730.
               doi: 10.1111/jnc.15453                             doi: 10.1002/anie.202011157
            57.  Sharkey LM, Safren N, Pithadia AS, et al. Mutant UBQLN2   68.  Owen I, Shewmaker F. The role of post-translational
               promotes toxicity by modulating intrinsic self-assembly.   modifications in the phase transitions of intrinsically
               Proc Natl Acad Sci U S A. 2018;115(44):E10495-E10504.  disordered proteins. Int J Mol Sci. 2019;20(21):5501.
               doi: 10.1073/pnas.1810522115                       doi: 10.3390/ijms20215501
            58.  Deng Q, Holler CJ, Taylor G, et al. FUS is phosphorylated   69.  Huang S, Xu B, Liu Y. Calcium promotes α-synuclein liquid-
               by DNA-PK and accumulates in the cytoplasm after DNA   liquid phase separation to accelerate amyloid aggregation.
               damage. J Neurosci. 2014;34(23):7802-7813.         Biochem Biophys Res Commun. 2022;603:13-20.
               doi: 10.1523/jneurosci.0172-14.2014                doi: 10.1016/j.bbrc.2022.02.097
            59.  Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency   70.  Grese ZR, Bastos AC, Mamede LD, French RL, Miller TM,
               in neurodegeneration. Prog Neurobiol. 2011;94(2):166-200.  Ayala YM. Specific RNA interactions promote TDP-43
               doi: 10.1016/j.pneurobio.2011.04.013               multivalent phase separation and maintain liquid properties.
                                                                  EMBO Rep. 2021;22(12):e53632.
            60.  Naumann M, Pal A, Goswami A,  et al. Impaired DNA
               damage response signaling by  FUS-NLS mutations leads      doi: 10.15252/embr.202153632
               to neurodegeneration and  FUS aggregate formation.  Nat   71.  Gao YY, Zhong T, Wang LQ, et al. Zinc enhances liquid-
               Commun. 2018;9(1):335.                             liquid  phase  separation  of  Tau  protein  and  aggravates
               doi: 10.1038/s41467-017-02299-1                    mitochondrial damages in cells.  Int J Biol Macromol.
                                                                  2022;209(Pt A):703-715.
            61.  Singatulina  AS,  Hamon  L,  Sukhanova  MV,  et al.  PARP-1
               activation directs FUS to DNA damage sites to form PARG-     doi: 10.1016/j.ijbiomac.2022.04.034
               reversible compartments enriched in damaged DNA.  Cell   72.  Patel A, Malinovska L, Saha S,  et al. ATP as a biological
               Rep. 2019;27(6):1809-1821.e5.                      hydrotrope. Science. 2017;356(6339):753-756.
               doi: 10.1016/j.celrep.2019.04.031                  doi: 10.1126/science.aaf6846
            62.  Oshidari R, Huang R, Medghalchi M, et al. DNA repair by   73.  Mann JR, Donnelly CJ. RNA modulates physiological
               Rad52 liquid droplets. Nat Commun. 2020;11(1):695.  and neuropathological protein phase transitions.  Neuron.
               doi: 10.1038/s41467-020-14546-z                    2021;109:2663-2681.
            63.  Krause LJ, Herrera MG, Winklhofer KF. The role of ubiquitin      doi: 10.1016/j.neuron.2021.06.023
               in regulating stress granule dynamics.  Front Physiol.   74.  Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-
               2022;13:910759.                                    Guevara  R.  RNA  length  has  a  non-trivial  effect  in  the
               doi: 10.3389/fphys.2022.910759                     stability of biomolecular condensates formed by RNA-
                                                                  binding proteins. PLoS Comput Biol. 2022;18(2):e1009810.
            64.  Agarwal A, Arora L, Rai SK, Avni A, Mukhopadhyay S.
               Spatiotemporal modulations in  heterotypic  condensates      doi: 10.1371/journal.pcbi.1009810
               of prion and  α-synuclein control phase transitions and   75.  Agarwal A, Rai SK, Avni A, Mukhopadhyay S. An intrinsically
               amyloid conversion. Nat Commun. 2022;13(1):1154.
                                                                  disordered  pathological  prion  variant  Y145Stop  converts
               doi: 10.1038/s41467-022-28797-5                    into self-seeding amyloids via liquid-liquid phase separation.
                                                                  Proc Natl Acad Sci U S A. 2021;118(45):e2100968118.
            65.  Jin X, Zhou M, Chen S, Li D, Cao X, Liu B. Effects of pH
               alterations on stress-  and aging-induced protein phase      doi: 10.1073/pnas.2100968118


            Volume 4 Issue 1 (2025)                         50                               doi: 10.36922/an.4493
   51   52   53   54   55   56   57   58   59   60   61