Page 127 - AN-4-2
P. 127

Advanced Neurology                                                          ML for EEG signal recognition



            validation curves and unstable loss trajectories) indicates   References
            a need for further optimization to improve generalization.   1.   Guerreiro CM. Epilepsy: Is there hope? Indian J Med Res.
            DNNs, though effective in some contexts, struggled to   2016;144(5):657-660.
            match CNN performance due to their inability to capture
            the intricate spatiotemporal dependencies inherent in EEG      doi: 10.4103/ijmr.IJMR_1051_16
            signals. These results align with broader methodological   2.   Pothmann L, Klos C, Braganza O, et al. Altered dynamics
            critiques: Studies relying solely on classification metrics   of  canonical  feedback  inhibition  predicts  increased
            (e.g., accuracy, F1-score) without transparently evaluating   burst transmission in chronic epilepsy.  J  Neurosci.
            model dynamics (e.g., learning curve convergence, ROC   2019;39(45):8998-9012.
            threshold stability) risk overestimating clinical utility.     doi: 10.1523/JNEUROSCI.2594-18.2019
              This  work  underscores  that  algorithmic  performance   3.   Fisher RS, Cross JH, D’Souza C, et al. Instruction manual
            claims must be paired with rigorous validation of training   for the ILAE 2017 operational classification of seizure types.
            behaviors. CNNs not only achieved better accuracy but also   Epilepsia. 2017;58(4):531-542.
            demonstrated stable convergence patterns and balanced      doi: 10.1111/epi.13671
            TPR-FPR tradeoffs across thresholds, fulfilling key criteria   4.   Blumenfeld H. Arousal and consciousness in focal seizures.
            for clinical robustness. These findings solidify the promise   Epilepsy Curr. 2021;21(5):353-359.
            of CNNs as a reliable foundation for automated epilepsy
            screening tools. Prioritizing architectures with verifiable      doi: 10.1177/15357597211029507
            generalization behaviors is necessary to bridge the gap   5.   Brodovskaya A, Kapur J. Circuits generating secondarily
            between computational advancements and clinically     generalized seizures. Epilepsy Behav. 2019;101:106474.
            deployable solutions.                                 doi: 10.1016/j.yebeh.2019.106474

            Acknowledgments                                    6.   Benbadis SR, Beniczky S, Bertram E, MacIver S, Moshé SL.
                                                                  The role of EEG in patients with suspected epilepsy. Epileptic
            None.                                                 Disord. 2020;22(2):143-155.

            Funding                                               doi: 10.1684/epd.2020.1151
                                                               7.   Chen H, Koubeissi MZ. Electroencephalography in epilepsy
            None.                                                 evaluation. Continuum (Minneap Minn). 2019;25(2):431-453.
            Conflict of interest                                  doi: 10.1212/CON.0000000000000705
            The authors declare no conflicts of interest.      8.   Müller-Putz GR. Electroencephalography.  Handb Clin
                                                                  Neurol. 2020;168:249-262.
            Author contributions                                  doi: 10.1016/b978-0-444-63934-9.00018-4
            Conceptualization: All authors                     9.   Kappel SL, Kidmose P. High-density ear-EEG.  Annu Int
            Formal analysis: All authors                          Conf IEEE Eng Med Biol Soc. 2017;2017:2394-2397.
            Investigation: All authors                            doi: 10.1109/embc.2017.8037338
            Methodology: Daniel Nasef, Milan Toma              10.  Leibetseder A, Eisermann M, LaFrance WC Jr., Nobili L, von
            Project administration: Milan Toma                    Oertzen TJ. How to distinguish seizures from non‐epileptic
            Supervision: Milan Toma                               manifestations. Epileptic Disord. 2020;22(6):716-738.
            Writing–original draft: All authors
            Writing–review & editing: All authors                 doi: 10.1684/epd.2020.1234
                                                               11.  Mari-Acevedo J, Yelvington K, Tatum WO. Normal EEG
            Ethics approval and consent to participate            variants. Handb Clin Neurol. 2019;160:143-160.

            Not applicable.                                       doi: 10.1016/b978-0-444-64032-1.00009-6
            Consent for publication                            12.  Kubota T, Kidokoro H, Narahara S,  et al. Evaluation of
                                                                  interobserver variability in application of the new neonatal
            Not applicable.                                       seizure classification proposed by the ILAE Task Force.
                                                                  Epilepsy Behav. 2020;111:107292.
            Availability of data                                  doi: 10.1016/j.yebeh.2020.107292

            The data utilized in this study is open-source and properly   13.  Wilcox KS, West PJ, Metcalf CS. The current approach of
            referenced.                                           the  Epilepsy  Therapy Screening  Program contract  site


            Volume 4 Issue 2 (2025)                        121                               doi: 10.36922/an.7941
   122   123   124   125   126   127   128   129   130   131   132