Page 128 - AN-4-2
P. 128

Advanced Neurology                                                          ML for EEG signal recognition



               for identifying improved therapies for the treatment of   23.  Eelbode T, Sinonquel P, Maes F, Bisschops R. Pitfalls in
               pharmacoresistant seizures in epilepsy. Neuropharmacology.   training and validation of deep learning systems. Best Pract
               2020;166:107811.                                   Res Clin Gastroenterol. 2021;52-53:101712.
               doi: 10.1016/j.neuropharm.2019.107811              doi: 10.1016/j.bpg.2020.101712
            14.  Weissl J, Hülsmeyer V, Brauer C, et al. Disease progression   24.  Pramanik A, Zimmerman MB, Jacob M. Memory-efficient
               and treatment response of idiopathic epilepsy in Australian   model-based deep learning with convergence and robustness
               shepherd dogs. J Vet Intern Med. 2011;26(1):116-125.  guarantees. IEEE Trans Comput Imaging. 2023;9:260-275.
               doi: 10.1111/j.1939-1676.2011.00853.x              doi: 10.1109/tci.2023.3252268
            15.  Cao X, Zheng S, Zhang J, Chen W, Du G. A hybrid CNN-  25.  Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM.
               Bi-LSTM model with feature fusion for accurate epilepsy   Extreme gradient boosting as a method for quantitative
               seizure detection. BMC Med Inform Decis Mak. 2025;25:6.  structure-activity relationships. J Chem Inf Model. 2016;
                                                                  56(12):2353-2360.
               doi: 10.1186/s12911-024-02845-0
                                                                  doi: 10.1021/acs.jcim.6b00591
            16.  Saadoon YA, Khalil M, Battikh D. Predicting epileptic
               seizures using efficientnet-B0 and SVMs: A deep learning   26.  Charilaou P, Battat R. Machine learning models and over-fitting
               methodology  for  EEG  analysis.  Bioengineering  (Basel).   considerations. World J Gastroenterol. 2022;28(5):605-607.
               2025;12(2):109.
                                                                  doi: 10.3748/wjg.v28.i5.605
               doi: 10.3390/bioengineering12020109
                                                               27.  De Lima Prado T, Dos Santos Lima GZ, Lobão-Soares B,
            17.  Mallick S, Baths V. Novel deep learning framework for   et al. Optimizing the detection of nonstationary signals by
               detection of epileptic seizures using EEG signals.  Front   using recurrence analysis. Chaos. 2018;28(8):085703.
               Comput Neurosci. 2024;18:1340251.
                                                                  doi: 10.1063/1.5022154
               doi: 10.3389/fncom.2024.1340251
                                                               28.  Lo Giudice M, Varone G, Ieracitano C, et al. Permutation
            18.  Yang Y, Luan T, Yu Z, et al. Technological vanguard: The   entropy-based interpretability of convolutional neural
               outstanding performance of the LTY-CNN model for   network models for interictal EEG discrimination of
               the early prediction of epileptic seizures.  J  Transl  Med.   subjects with epileptic seizures vs. psychogenic non-
               2024;22:162.                                       epileptic seizures. Entropy (Basel). 2022;24(1):102.
               doi: 10.1186/s12967-024-04945-x                    doi: 10.3390/e24010102
            19.  Chong L,  Husain G, Nasef  D, Vathappallil P, Matalia  M,   29.  Suzuki R, Yajima N, Sakurai K, et al. Association of patients’
               Toma  M. Machine learning strategies  for  improved   past misdiagnosis experiences with trust in their current
               cardiovascular disease detection.  Med  Res  Arch.   physician among Japanese Adults.  J  Gen Intern Med.
               2025;13(1):1-16.                                   2021;37(5):1115-1121.
               doi: 10.18103/mra.v13i1.6245                       doi: 10.1007/s11606-021-06950-y
            20.  U.S. Food and Drug Administration. Considerations for the   30.  Ho SY, Phua K, Wong L, Bin Goh WW. Extensions of
               Use of Artificial Intelligence to Support Regulatory Decision-  the external validation for checking learned model
               Making for Drug and Biological Products. Draft Guidance   interpretability and generalizability.  Patterns (NY).
               for Industry and Other Interested Parties.  Silver  Spring,   2020;1(8):100129.
               MD: U.S. Food and Drug Administration; 2025. Available
               from:   https://www.fda.gov/media/184830/download [Last      doi: 10.1016/j.patter.2020.100129
               accessed on 2025 Mar 06].                       31.  Choi SR, Lee M. Transformer architecture and attention
                                                                  mechanisms in genome data analysis: A  comprehensive
            21.  Benhassine O.  Epilepsy Detection Using EEG Signals;
               2021. Available from: https://www.kaggle.com/datasets/  review. Biology (Basel). 2023;12(7):1033.
               oussamabenhassine/epilepsy-detection-using-eeg-signals      doi: 10.3390/biology12071033
               [Last accessed on 2024 Dec 17].
                                                               32.  Lash TL, Abrams B, Bodnar LM. Comparison of bias
            22.  Engstrand RD, Moeller G. Confusion matrix analysis for   analysis strategies applied to a large data set. Epidemiology.
               form perception. Hum Factors. 1967;9(5):439-446.   2014;25(4):576-582.
               doi: 10.1177/001872086700900507                    doi: 10.1097/ede.0000000000000102









            Volume 4 Issue 2 (2025)                        122                               doi: 10.36922/an.7941
   123   124   125   126   127   128   129   130   131   132   133