Page 35 - AN-4-2
P. 35

Advanced Neurology                                             SARS-CoV-2 mechanisms of neurological impact



               autopsy. Nature. 2022;612(7941):758‑763.        16.  Xie Y, Xu E, Al-Aly Z. Risks of mental health outcomes in
                                                                  people with covid-19: Cohort study. BMJ. 2022;376:e068993.
               doi: 10.1038/s41586-022-05542-y
                                                                  doi: 10.1136/bmj‑2021‑068993
            6.   Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric
               risk  trajectories  after  SARS‑CoV‑2  infection:  An  analysis   17.  Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of
               of 2-year retrospective cohort studies including 1  284   COVID-19. Nat Med. 2022;28(11):2406‑2415.
               437 patients. Lancet Psychiatry. 2022;9(10):815‑827.
                                                                  doi: 10.1038/s41591-022-02001-z
               doi: 10.1016/S2215-0366(22)00260-7              18.  Amraei R, Xia C, Olejnik J, et al. Extracellular vimentin is
            7.   Pandharipande  P,  Williams  Roberson  S,  Harrison  FE,   an attachment factor that facilitates SARS-CoV-2 entry
               Wilson JE, Bastarache JA, Ely EW. Mitigating neurological,   into human endothelial cells.  Proc Natl Acad Sci U S A.
               cognitive, and psychiatric sequelae of COVID-19-related   2022;119(6):e2113874119.
               critical illness. Lancet Respir Med. 2023;11(8):726‑738.     doi: 10.1073/pnas.2113874119
               doi: 10.1016/S2213-2600(23)00238-2              19.  Cantuti‑Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1
            8.   Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization   facilitates SARS-CoV-2 cell entry and infectivity.  Science.
               of  post-acute  sequelae  of  COVID-19.  Nature.   2020;370(6518):856‑860.
               2021;594(7862):259‑264.                            doi: 10.1126/science.abd2985
               doi: 10.1038/s41586-021-03553-9                 20.  Hoffmann M, Kleine‑Weber H, Schroeder S, et al. SARS-
            9.   Liu TC, Yoo SM, Sim MS, Motwani Y, Viswanathan   N,   CoV-2  cell  entry  depends  on  ACE2 and  TMPRSS2  and
               Wenger  NS.  Perceived  cognitive  deficits  in  patients   is blocked by a clinically proven protease inhibitor.  Cell.
               with symptomatic SARS-CoV-2 and their association   2020;181(2):271‑280.e8.
               with post-COVID-19 condition.  JAMA Netw Open.      doi: 10.1016/j.cell.2020.02.052
               2023;6(5):e2311974.
                                                               21.  Lersy F, Benotmane I, Helms J,  et al. Cerebrospinal fluid
               doi: 10.1001/jamanetworkopen.2023.11974            features in patients with coronavirus disease 2019 and
            10.  Hartung TJ, Neumann C, Bahmer T,  et al. Fatigue and   neurological manifestations: Correlation with brain
               cognitive impairment after COVID-19: A  prospective   magnetic resonance imaging findings in 58 patients. J Infect
               multicentre study. EClinicalMedicine. 2022;53:101651.  Dis. 2021;223(4):600‑609.

               doi: 10.1016/j.eclinm.2022.101651                  doi: 10.1093/infdis/jiaa745
            11.  Zhao S, Martin EM, Reuken PA,  et al. Long COVID is   22.  Schweitzer F, Goereci Y, Franke C,  et al. Cerebrospinal
               associated with  severe  cognitive  slowing:  A  multicentre   fluid analysis post-COVID-19 is not suggestive of
               cross-sectional study. EClinicalMedicine. 2024;68:102434.  persistent central nervous system infection.  Ann  Neurol.
                                                                  2022;91(1):150‑157.
               doi: 10.1016/j.eclinm.2024.102434
                                                                  doi: 10.1002/ana.26262
            12.  Hampshire A, Azor A, Atchison C,  et al. Cognition and
               memory after Covid-19 in a large community sample.   23.  Yang AC, Kern F, Losada PM, et al. Dysregulation of brain
               N Engl J Med. 2024;390(9):806‑818.                 and choroid plexus cell types in severe COVID-19. Nature.
                                                                  2021;595(7868):565‑571.
               doi: 10.1056/NEJMoa2311330
                                                                  doi: 10.1038/s41586-021-03710-0
            13.  Becker JH, Lin JJ, Doernberg M,  et al. Assessment of
               cognitive function in patients after COVID-19 infection.   24.  Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is
               JAMA Netw Open. 2021;4(10):e2130645.               associated with changes in brain structure in UK Biobank.
                                                                  Nature. 2022;604(7907):697‑707.
               doi: 10.1001/jamanetworkopen.2021.30645
                                                                  doi: 10.1038/s41586-022-04569-5
            14.  Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ.
               6-month neurological and psychiatric outcomes in 236  379   25.  Monje  M,  Iwasaki  A.  The  neurobiology  of  long  COVID.
               survivors of COVID-19: A  retrospective cohort study using   Neuron. 2022;110(21):3484‑3496.
               electronic health records. Lancet Psychiatry. 2021;8(5):416‑427.     doi: 10.1016/j.neuron.2022.10.006
               doi: 10.1016/S2215-0366(21)00084-5              26.  Wong  AC,  Devason  AS,  Umana  IC,  et al. Serotonin
                                                                  reduction in post-acute sequelae of viral infection.  Cell.
            15.  Bohmwald K, Galvez NMS, Rios M, Kalergis AM.
               Neurologic alterations due to respiratory virus infections.   2023;186(22):4851‑4867.e20.
               Front Cell Neurosci. 2018;12:386.                  doi: 10.1016/j.cell.2023.09.013
               doi: 10.3389/fncel.2018.00386                   27.  Moghimi N, Di Napoli M, Biller J, et al. The neurological


            Volume 4 Issue 2 (2025)                         29                               doi: 10.36922/an.4909
   30   31   32   33   34   35   36   37   38   39   40