Page 34 - DP-2-1
P. 34
Design+ Digital art illustration and design in Zimbabwe
31. Garcia MB. The paradox of artificial creativity: Challenges doi: 10.1557/s43579-023-00489-1
and opportunities of generative AI artistry. Creat Res J. 42. AVAC Arts. Zimbabwe Visual Arts Industry in Doldrums.
2024:1-14.
AVAC Arts; 2017. Available from: https://avacarts.com/
doi: 10.1080/10400419.2024.2354622 zimbabwe-visual-arts-industry-in-doldrums/2017/01/15
32. Sahnir N, Jamilah, Yatim H. Pengenalan teknologi Artificial [Last accessed on 2024 Jun 19].
Intelligence (AI) dalam meningkatkan pengalaman belajar 43. Mushohwe K. Children and Art Education. The Herald;
seni di era digitalisasi pendidikan. Semin Nas Dies Natali. 2015. Available from: https://www.herald.co.zw/children-
2023;62:245-256. and-art-education [Last accessed on 2024 Jun 20].
doi: 10.59562/semnasdies.v1i1.811 44. Makoni TZ. Does Animation Have a Future in Zimbabwe?
33. Gong Y. Application of virtual reality teaching method Comexposed; 2018. Available from: https://www.comexposed.
and artificial intelligence technology in digital media art com/blog/does-animation-have-a-future-in-zimbabwe [Last
creation. Ecol Inform. 2021;63:101304. accessed on 2024 Oct 20].
doi: 10.1016/j.ecoinf.2021.101304 45. Denzin NK, Lincoln YS. The SAGE Handbook of Qualitative
Research. United States: SAGE Publications Ltd; 2011.
34. Zhang W, Shankar A, Antonidoss A. Modern art education
and teaching based on artificial intelligence. J Interconnect 46. Maxwell J. Qualitative Research Design: An Interactive
Networks. 2022;22(Suppl 1). Approach: An Interactive Approach. United States: SAGE
Publications Ltd; 2013.
doi: 10.1142/S021926592141005X
47. Hossain MI, Hussain MI, Akther A. E-commerce platforms
35. Zhao X, Zhao X. Application of generative artificial in developing economies: Unveiling behavioral intentions
intelligence in film image production. Comput Aided Des through Technology Acceptance Model (TAM). Open J Bus
Appl. 2024;21:15-28. Manag. 2023;11(6):2988-3020.
doi: 10.14733/cadaps.2024.S27.15-28 doi: 10.4236/ojbm.2023.116165
36. Yusa IMM, Yu Y, Sovhyra T. Reflections on the use of 48. Al-Adwan AS, Li N, Al-Adwan A, Abbasi GA, Albelbisi NA,
artificial intelligence in works of art. J Aesthet Des Art Habibi A. Correction to: “Extending the Technology
Manag. 2022;2(2):152-167. Acceptance Model (TAM) to predict university students’
doi: 10.58982/jadam.v2i2.334 intentions to use metaverse-based learning platforms”. Educ
Inf Technol. 2023;29:2583-2584.
37. Ernst H. Artificial: A Study on the Use of Artificial Intelligence
in Art; 2023. Available from: https://digitalcommons. doi: 10.1007/s10639-023-11913-3
unomaha.edu/university_honors_programhttps:// 49. Ajibade P. Technology acceptance model limitations and
unomaha.az1.qualtrics.com/jfe/form [Last accessed on 2024 criticisms: Exploring the practical applications and use in
Oct 19].
technology-related studies, mixedmethod, and qualitative
38. Zabora V, Kasianenko K, Pashukova S, Alforova Z, researches. Libr Philos Pract. 2018:1-13.
Shmehelska Y. Digital art in designing an artistic image. Rev 50. Mardoyo E, Lubis M, Bhaskoro SB. Evaluasi virtual
Amazonia Investig. 2023;12(64):300-305.
reality menggunakan Technology Acceptance Model
doi: 10.34069/AI/2023.64.04.31 (TAM) Terkait Dunia Metaverse. J Sist Cerdas. 2022;5(3):
182-194.
39. Ozdemir D. A conceptual framework on the relationship of
digital technology and art. Int J Soc Educ Sci. 2022;4(1):121-134. doi: 10.37396/jsc.v5i3.250
doi: 10.46328/ijonses.313 51. Bryant A, Charmaz K. The SAGE Handbook of Grounded
40. El Hajj M. The future of digital arts. Int J Educ Learn Res. Theory. United States: SAGE Publications Ltd; 2007.
2023;5:109-129. doi: 10.4135/9781848607941
doi: 10.21608/ijelr.2023.211965.1002 52. Leech NL, Onwuegbuzie AJ. An array of qualitative data
41. Nocheseda CJC, Santos MFA, Espera AH Jr., Advincula RC. analysis tools: A call for data analysis triangulation. Sch
3D digital manufacturing technologies, materials, and artificial Psychol Q. 2007;22(4):557-584.
intelligence in art. MRS Commun. 2023;13(6):1102-1118. doi: 10.1037/1045-3830.22.4.557
Volume 2 Issue 1 (2025) 11 doi: 10.36922/dp.4342

