Page 77 - EER-2-2
P. 77

Explora: Environment
            and Resource                                                           Application of Algae for seed priming



               doi: 10.3390/plants9060675                         from algae and its relation to plant growth. In: Plant Growth-
                                                                  Promoting Microbes for Sustainable Biotic and Abiotic Stress
            66.  Lamb TI, Berghahn E, Pita FM, de Oliveira Neves L, dos
               Reis Blasi ÉA, Hofstetter JS, et al. Isolation and selection of   Management. Netherlands: Elsevier; 2021. p. 395-423.
               microalgae capable of stimulating rice plant development      doi: 10.1007/978-3-030-66587-6_14
               and seed production. Algal Res. 2023;74:103203.
                                                               77.  Kumawat P, Kumawat V. Seaweed marine algae: Nutritional
               doi: 10.1016/j.algal.2023.103203                   values and plant growth regulators for sustainable
            67.  Thinh NQ. Influences of seed priming with  Spirulina   agriculture. Int J Environ Agric Res. 2023;9(10):21-26.
               platensis extract on seed quality properties in black gram      doi: 10.5281/zenodo.10054276
               (Vigna mungo L.). Vietnam J Sci Technol Eng. 2021;63:36-41.
                                                               78.  Górka B, Wieczorek PP. Simultaneous determination of
            68.  Karbarz M, Piziak M, Żuczek J, Duda M. Influence   nine phytohormones in seaweed and algae extracts by
               of microalgae  Planktochlorella nurekis clones on seed   HPLC-PDA. J Chromatogr B Analyt Technol Biomed Life Sci.
               germination. Agronomy. 2023;13(1):9.               2017;1057:32-39.
               doi: 10.3390/agronomy13010009                      doi: 10.1016/j.jchromb.2017.04.048
            69.  Seman V, Hajnal-Jafari T, Stamenov D, Đurić S. Stimulating   79.  Tarakhovskaya ER, Maslov YI, Shishova MF. Phytohormones
               effect of microalgae on germination and initial growth of red   in algae. Russ J Plant Physiol. 2007;54(2):163-170.
               radish (Raphanus sativus L. var. Radicula Pers.). [2020].
                                                                  doi: 10.1134/S1021443707020021
            70.  Chabili A, Minaoui F, Hakkoum Z, Douma M, Meddich A,   80.  Qi H, Kang D, Zeng W,  et al. Alterations of endogenous
               Loudiki M.  Effects  of  extraction  methods  on the  plant   hormones, antioxidant metabolism, and aquaporin gene
               biostimulant activity of the soil microalga Chlorella vulgaris.   expression in relation to  γ-aminobutyric acid-regulated
               J Appl Phycol. 2024;36:3301-3314.
                                                                  thermotolerance in white clover.  Antioxidants (Basel).
               doi: 10.1007/s10811-024-03328-5                    2021;10(7):1099.
            71.  Shedeed ZA, Gheda S, Elsanadily S, Alharbi K, Osman  ME.      doi: 10.3390/antiox10071099
               Spirulina platensis biofertilization for enhancing growth,   81.  El-Sadek  A,  Ahmed  E.  Novel  application  of  Spirulina
               photosynthetic capacity and yield of  Lupinus luteus.   platensis extract as an alternative to the expensive plant
               Agriculture. 2022;12(6):781.
                                                                  growth regulators on  Capparis cartilaginea (Decne).
               doi: 10.3390/agriculture12060781                   Al-Azhar J Pharm Sci. 2022;66(2):29-41.
            72.  Gitau MM, Farkas A, Balla B, Ördög V, Futó Z, Maróti G.   82.  Saebmehr H, Rafiee F, Mostafavi G, Givianrad MH.
               Strain-specific biostimulant effects of  Chlorella and   Extraction of abscisic acid and gibberellin from Sargassum
               Chlamydomonas green microalgae on Medicago truncatula.   muticum  (Phaeophyceae)  and  Gracilaria  corticata
               Plants (Basel). 2021;10(6):1060.                   (Rhodophyta) harvested from Persian Gulf. Iran J Fish Sci.
                                                                  2022;21(2):590-604.
               doi: 10.3390/plants10061060
                                                                  doi: 10.22092/ijfs.2022.126672
            73.  Rachidi F, Benhima R, Kasmi Y, Sbabou L, Arroussi HE.
               Evaluation of microalgae polysaccharides as biostimulants of   83.  Righini H, Cetrullo S, Bissoli I, et al. Evaluating Ecklonia
               tomato plant defense using metabolomics and biochemical   maxima water-soluble polysaccharides as a growth promoter
               approaches. Sci Rep. 2021;11(1):930.               of tomato seedlings and resistance inducer to Fusarium wilt.
                                                                  Sci Hortic. 2023;317:112071.
               doi: 10.1038/s41598-020-78820-2
                                                                  doi: 10.1016/j.scienta.2023.112071
            74.  Munaro D, Nunes A, Schmitz C, et al. Metabolites produced
               by macro-  and microalgae as plant biostimulants. In:   84.  Sarkar P, Bandyopadhyay TK, Gopikrishna K, et al. Algal
               Studies in Natural Products Chemistry. Vol. 71. Netherlands:   carbohydrates: sources, biosynthetic pathway, production,
               Elsevier; 2021. p. 87-120.                         and applications. Bioresour Technol. 2024;375:131489.
               doi: 10.1016/bs.snp.2021.03.001                    doi: 10.1016/j.biortech.2023.131489
            75.  Chen Y, You L, Sun-Waterhouse D. Effects of processing   85.  Kraan S. Algal polysaccharides, novel applications and outlook.
               on the physicochemical characteristics and health benefits   In: Carbohydrates - Comprehensive Studies on Glycobiology and
               of algae products: Trade-offs among food carbon footprint,   Glycotechnology. London: IntechOpen; 2012.
               nutrient  profiles,  health  properties,  and  consumer      doi: 10.5772/51572
               acceptance. Trends Food Sci Technol. 2024;117:104375.
                                                               86.  Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate
               doi: 10.1016/j.tifs.2024.104375
                                                                  metabolism: An important pathway for bioconversion of
            76.  Shanab SM, Shalaby EA. Production of plant hormones   brown algae. Biotechnol Biofuels. 2021;14(1):158.


            Volume 2 Issue 2 (2025)                         24                          doi: 10.36922/EER025120025
   72   73   74   75   76   77   78   79   80   81   82