Page 78 - EER-2-2
P. 78

Explora: Environment
            and Resource                                                           Application of Algae for seed priming



               doi: 10.1186/s13068-021-02007-8                 97.  Synytsya A, Sushytskyi L, Saloň I, Babayeva T, Čopíková J.
            87.  Dutra FB, de Almeida LS, Dona DBJ, et al. Assessing the   Intracellular and extracellular carbohydrates in microalgae.
               performance of tropical forest seeds encapsulated with gels   In:  Handbook  of  Food  and  Feed  from  Microalgae. United
               from Vitis vinifera and sodium alginate for direct seeding.   States: Academic Press; 2023. p. 87-102.
               J Trop For Sci. 2023;35(1):37-50.                  doi: 10.1016/B978-0-12-822558-0.00005-4
               doi: 10.26525/jtfs2023.35.1.037050              98.  Casas-Arrojo V, Arrojo Agudo MD, Cárdenas García C, et al.
            88.  Chin JM, Lim YY, Ting ASY. Biopolymers for biopriming   Antioxidant, immunomodulatory and potential anticancer
               of Brassica rapa seeds: A study on coating efficacy, bioagent   capacity of polysaccharides (glucans) from Euglena gracilis
               viability and seed germination.  J  Saudi Soc Agric Sci.   GA Klebs. Pharmaceuticals (Basel). 2022;15(11):1379.
               2021;20(3):198-207.                                doi: 10.3390/ph15111379
               doi: 10.1016/j.jssas.2021.01.006                99.  Osman ME, Abo-Shady AM, Gaafar RM, El-Nagar MM,
            89.  Li J, Wang X, Lin X, et al. Alginate-derived oligosaccharides   Ismail GA. Promoting wheat growth by priming grains with
               promote water stress tolerance in cucumber (Cucumis   aqueous  extracts of  Nostoc  muscorum  and Arthrospira
               sativus L). Plant Physiol Biochem. 2018;130:80-88.  platensis. Egypt J Bot. 2021;61(3):809-821.
               doi: 10.1016/j.plaphy.2018.06.040                  doi: 10.21608/ejbo.2021.78079.1697
            90.  Bittkau KS, Neupane S, Alban S. Initial evaluation of six   100. Kargın H, Bilgüven M. Microalgae-macroalgae based
               different brown algae species as source for crude bioactive   nutraceuticals and their benefits.  Curr Trends Nat Sci.
               fucoidans. Algal Res. 2020;45:101759.              2022;11:232-246.
               doi: 10.1016/j.algal.2020.101759                   doi: 10.47068/ctns.2022.v11i21.026
            91.  Li Y, Zheng Y, Zhang Y, et al. Brown algae carbohydrates:   101. Shivakumar S, Serlini N, Esteves SM, Miros S, Halim R. Cell
               Structures, pharmaceutical properties, and research   walls of lipid-rich microalgae: A comprehensive review on
               challenges. Mar Drugs. 2021;19(11):620.            characterisation, ultrastructure, and enzymatic disruption.
                                                                  Fermentation. 2024;10(12):608.
               doi: 10.3390/md19110620
                                                                  doi: 10.3390/fermentation10120608
            92.  De Borba MC, Velho AC, de Freitas MB, et al. A laminarin-
               based  formulation  protects  wheat  against  Zymoseptoria   102. Rakkammal K, Maharajan T, Ceasar SA, Ramesh M.
               tritici  via direct antifungal  activity and  elicitation  of  host   Biostimulants and their role in improving plant growth under
               defense-related genes. Plant Dis. 2022;106(5):1408-1418.  drought and salinity. Cereal Res Commun. 2023;51(1):61-74.
               doi: 10.1094/PDIS-08-21-1675-RE                    doi: 10.1007/s42976-022-00299-6
            93.  Chevenier A, Jouanneau D, Ficko-Blean E. Carrageenan   103. Pérez-Álvarez S, Ochoa-Chaparro EH, Anchondo-
               biosynthesis in red algae: A review. Cell Surf. 2023;9:100097.  Páez JC, et al. Nitrogen assimilation, biomass, and yield in
               doi: 10.1016/j.tcsw.2023.100097                    response to application of algal extracts, Rhizobium sp., and
                                                                  Trichoderma asperellum as  biofertilizers  in hybrid  maize.
            94.  Golestani F, Nasibi  F, Oloumi H, Malekpourzadeh L.   Nitrogen. 2024;5(4):1031-1047.
               Enhancement  of  guar  (Cyamopsis tetragonoloba)  plant
               resilience and growth via biotic and abiotic elicitation: the      doi: 10.3390/nitrogen5040060
               role of carrageenan and selenium nanoparticles in salt stress   104. Zhu J, Cai Y, Wakisaka M, et al. Mitigation of oxidative stress
               mitigation. Plant Biosyst. 2025;159:179-190.       damage caused by abiotic stress to improve biomass yield of

               doi: 10.1080/11263504.2025.2452183                 microalgae: A review. Sci Total Environ. 2023;882:165200.
            95.  Hossain MM, Sultana F, Khan S,  et al. Carrageenans as      doi: 10.1016/j.scitotenv.2023.165200
               biostimulants and bio-elicitors: Plant growth and defense   105. Selim S, Zrig A, Albqmi M, et al. BAP (6-Benzylaminopurine)
               responses. Stress Biol. 2024;4(1):3.               seed-priming enhanced growth, antioxidant accumulation
               doi: 10.1007/s44154-023-00143-9                    and anthocyanin metabolism in olive sprouts. Horticulturae.
                                                                  2023;9(9):1055.
            96.  Nivetha N, Shukla PS, Nori SS, Kumar S, Suryanarayan S.
               A  red seaweed  Kappaphycus alvarezii-based biostimulant      doi: 10.3390/horticulturae9091055
               (AgroGain®) improves the growth of  Zea mays and   106. Mariamenatu AH, Abdu EM. Overconsumption of omega‐6
               impacts agricultural sustainability by beneficially priming   polyunsaturated fatty acids  (PUFAs)  versus  deficiency of
               rhizosphere soil microbial community.  Front Microbiol.   omega‐3 PUFAs in modern‐day diets: the disturbing factor
               2024;15:1330237.                                   for their “balanced antagonistic metabolic functions” in the
               doi: 10.3389/fmicb.2024.1330237                    human body. J Lipids. 2021;2021:8848161.


            Volume 2 Issue 2 (2025)                         25                          doi: 10.36922/EER025120025
   73   74   75   76   77   78   79   80   81   82   83