Page 78 - EER-2-2
P. 78
Explora: Environment
and Resource Application of Algae for seed priming
doi: 10.1186/s13068-021-02007-8 97. Synytsya A, Sushytskyi L, Saloň I, Babayeva T, Čopíková J.
87. Dutra FB, de Almeida LS, Dona DBJ, et al. Assessing the Intracellular and extracellular carbohydrates in microalgae.
performance of tropical forest seeds encapsulated with gels In: Handbook of Food and Feed from Microalgae. United
from Vitis vinifera and sodium alginate for direct seeding. States: Academic Press; 2023. p. 87-102.
J Trop For Sci. 2023;35(1):37-50. doi: 10.1016/B978-0-12-822558-0.00005-4
doi: 10.26525/jtfs2023.35.1.037050 98. Casas-Arrojo V, Arrojo Agudo MD, Cárdenas García C, et al.
88. Chin JM, Lim YY, Ting ASY. Biopolymers for biopriming Antioxidant, immunomodulatory and potential anticancer
of Brassica rapa seeds: A study on coating efficacy, bioagent capacity of polysaccharides (glucans) from Euglena gracilis
viability and seed germination. J Saudi Soc Agric Sci. GA Klebs. Pharmaceuticals (Basel). 2022;15(11):1379.
2021;20(3):198-207. doi: 10.3390/ph15111379
doi: 10.1016/j.jssas.2021.01.006 99. Osman ME, Abo-Shady AM, Gaafar RM, El-Nagar MM,
89. Li J, Wang X, Lin X, et al. Alginate-derived oligosaccharides Ismail GA. Promoting wheat growth by priming grains with
promote water stress tolerance in cucumber (Cucumis aqueous extracts of Nostoc muscorum and Arthrospira
sativus L). Plant Physiol Biochem. 2018;130:80-88. platensis. Egypt J Bot. 2021;61(3):809-821.
doi: 10.1016/j.plaphy.2018.06.040 doi: 10.21608/ejbo.2021.78079.1697
90. Bittkau KS, Neupane S, Alban S. Initial evaluation of six 100. Kargın H, Bilgüven M. Microalgae-macroalgae based
different brown algae species as source for crude bioactive nutraceuticals and their benefits. Curr Trends Nat Sci.
fucoidans. Algal Res. 2020;45:101759. 2022;11:232-246.
doi: 10.1016/j.algal.2020.101759 doi: 10.47068/ctns.2022.v11i21.026
91. Li Y, Zheng Y, Zhang Y, et al. Brown algae carbohydrates: 101. Shivakumar S, Serlini N, Esteves SM, Miros S, Halim R. Cell
Structures, pharmaceutical properties, and research walls of lipid-rich microalgae: A comprehensive review on
challenges. Mar Drugs. 2021;19(11):620. characterisation, ultrastructure, and enzymatic disruption.
Fermentation. 2024;10(12):608.
doi: 10.3390/md19110620
doi: 10.3390/fermentation10120608
92. De Borba MC, Velho AC, de Freitas MB, et al. A laminarin-
based formulation protects wheat against Zymoseptoria 102. Rakkammal K, Maharajan T, Ceasar SA, Ramesh M.
tritici via direct antifungal activity and elicitation of host Biostimulants and their role in improving plant growth under
defense-related genes. Plant Dis. 2022;106(5):1408-1418. drought and salinity. Cereal Res Commun. 2023;51(1):61-74.
doi: 10.1094/PDIS-08-21-1675-RE doi: 10.1007/s42976-022-00299-6
93. Chevenier A, Jouanneau D, Ficko-Blean E. Carrageenan 103. Pérez-Álvarez S, Ochoa-Chaparro EH, Anchondo-
biosynthesis in red algae: A review. Cell Surf. 2023;9:100097. Páez JC, et al. Nitrogen assimilation, biomass, and yield in
doi: 10.1016/j.tcsw.2023.100097 response to application of algal extracts, Rhizobium sp., and
Trichoderma asperellum as biofertilizers in hybrid maize.
94. Golestani F, Nasibi F, Oloumi H, Malekpourzadeh L. Nitrogen. 2024;5(4):1031-1047.
Enhancement of guar (Cyamopsis tetragonoloba) plant
resilience and growth via biotic and abiotic elicitation: the doi: 10.3390/nitrogen5040060
role of carrageenan and selenium nanoparticles in salt stress 104. Zhu J, Cai Y, Wakisaka M, et al. Mitigation of oxidative stress
mitigation. Plant Biosyst. 2025;159:179-190. damage caused by abiotic stress to improve biomass yield of
doi: 10.1080/11263504.2025.2452183 microalgae: A review. Sci Total Environ. 2023;882:165200.
95. Hossain MM, Sultana F, Khan S, et al. Carrageenans as doi: 10.1016/j.scitotenv.2023.165200
biostimulants and bio-elicitors: Plant growth and defense 105. Selim S, Zrig A, Albqmi M, et al. BAP (6-Benzylaminopurine)
responses. Stress Biol. 2024;4(1):3. seed-priming enhanced growth, antioxidant accumulation
doi: 10.1007/s44154-023-00143-9 and anthocyanin metabolism in olive sprouts. Horticulturae.
2023;9(9):1055.
96. Nivetha N, Shukla PS, Nori SS, Kumar S, Suryanarayan S.
A red seaweed Kappaphycus alvarezii-based biostimulant doi: 10.3390/horticulturae9091055
(AgroGain®) improves the growth of Zea mays and 106. Mariamenatu AH, Abdu EM. Overconsumption of omega‐6
impacts agricultural sustainability by beneficially priming polyunsaturated fatty acids (PUFAs) versus deficiency of
rhizosphere soil microbial community. Front Microbiol. omega‐3 PUFAs in modern‐day diets: the disturbing factor
2024;15:1330237. for their “balanced antagonistic metabolic functions” in the
doi: 10.3389/fmicb.2024.1330237 human body. J Lipids. 2021;2021:8848161.
Volume 2 Issue 2 (2025) 25 doi: 10.36922/EER025120025

