Page 198 - EJMO-9-1
P. 198
Eurasian Journal of Medicine and
Oncology
Research on hypoxia and ECM in cancer
60. Hu D, Li Z, Zheng B, et al. Cancer-associated fibroblasts 72. Tennant DA, Durán RV, Gottlieb E. Targeting metabolic
in breast cancer: Challenges and opportunities. Cancer transformation for cancer therapy. Nat Rev Cancer.
Commun (Lond). 2022;42(5):401-434. 2010;10(4):267-277.
doi: 10.1002/cac2.12291 doi: 10.1038/nrc2817
61. Tang X, Hou Y, Yang G, et al. Stromal miR-200s contribute 73. Yeung SJ, Pan J, Lee MH. Roles of p53, Myc and HIF-1 in
to breast cancer cell invasion through CAF activation and regulating glycolysis-the seventh hallmark of cancer. Cell
ECM remodeling. Cell Death Differ. 2016;23(1):132-145. Mol Life Sci. 2008;65(24):3981.
doi: 10.1038/cdd.2015.78 doi: 10.1007/s00018-008-8224-x
62. Qiu ZW, Zhong YT, Lu ZM, et al. Breaking physical barrier of 74. Végran F, Boidot R, Michiels C, Sonveaux P, Feron O.
fibrotic breast cancer for photodynamic immunotherapy by Lactate influx through the endothelial cell monocarboxylate
remodeling tumor extracellular matrix and reprogramming transporter MCT1 supports an NF-κB/IL-8 pathway that
cancer-associated fibroblasts. ACS Nano. 2024;18(13):9713- drives tumor angiogenesis. Cancer Res. 2011;71(7):2550-
9735. 2560.
doi: 10.1021/acsnano.4c01499 doi: 10.1158/0008-5472.CAN-10-2828
63. De Vita A, Liverani C, Molinaro R, et al. Lysyl oxidase 75. Ciavardelli D, Rossi C, Barcaroli D, et al. Breast cancer stem
engineered lipid nanovesicles for the treatment of triple cells rely on fermentative glycolysis and are sensitive to
negative breast cancer. Sci Rep. 2021;11(1):5107. 2-deoxyglucose treatment. Cell Death Dis. 2014;5(7):e1336.
doi: 10.1038/s41598-021-84492-3 doi: 10.1038/cddis.2014.285
64. Chen D, Wang W, Zhu Q, et al. In vivo real-time monitoring 76. Sullivan R, Paré GC, Frederiksen LJ, Semenza GL, Graham
of the development of hypoxia and angiogenesis in cervical CH. Hypoxia-induced resistance to anticancer drugs is
cancer. Chem Eng J. 2023;473:145498. associated with decreased senescence and requires hypoxia-
65. Yang M, Mu Y, Yu X, et al. Survival strategies: How tumor inducible factor-1 activity. Mol Cancer Ther. 2008;7(7):1961-
hypoxia microenvironment orchestrates angiogenesis. 1973.
Biomed Pharmacother. 2024;176:116783. doi: 10.1158/1535-7163.MCT-08-0198
doi: 10.1016/j.biopha.2024.116783 77. Chen X, Qian Y, Wu S. The Warburg effect: Evolving
66. Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A interpretations of an established concept. Free Radic Biol
molecular perspective on HIF-1α and angiogenic stimulator Med. 2015;79:253-263.
networks and their role in solid tumors: An update. Int J Mol doi: 10.1016/j.freeradbiomed.2014.08.027
Sci. 2024;25(6):3313.
78. Ruckenstuhl C, Büttner S, Carmona-Gutierrez D, et al. The
67. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic Warburg effect suppresses oxidative stress induced apoptosis
aspects of angiogenesis. Cell. 2011;146(6):873-887. in a yeast model for cancer. PLoS One. 2009;4(2):e4592.
doi: 10.1016/j.cell.2011.08.039 doi: 10.1371/journal.pone.0004592
68. Tang E, Wang Y, Liu T, Yan B. Gastrin promotes angiogenesis 79. Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition
by activating HIF-1α/β-catenin/VEGF signaling in gastric of pyruvate kinase M2 by reactive oxygen species
cancer. Gene. 2019;704:42-48. contributes to cellular antioxidant responses. Science.
doi: 10.1016/j.gene.2019.04.029 2011;334(6060):1278-1283.
69. Zhang QW, Lin XL, Dai ZH, et al. Hypoxia and low-glucose doi: 10.1126/science.1211485
environments co-induced HGDILnc1 promote glycolysis 80. Hamanaka RB, Chandel NS. Cell biology. Warburg effect
and angiogenesis. Cell Death Discov. 2024;10(1):132.
and redox balance. Science. 2011;334(6060):1219-1220.
doi: 10.1038/s41420-024-01903-w
doi: 10.1126/science.1215637
70. Lebel M, Cliche DO, Charbonneau M, et al. Hypoxia 81. Handy DE, Loscalzo J. Redox regulation of mitochondrial
promotes invadosome formation by lung fibroblasts. Cells. function. Antioxid Redox Signal. 2012;16(11):1323-1367.
2024;13(13):1152.
doi: 10.1089/ars.2011.4123
doi: 10.3390/cells13131152
82. Liu J, Levens D. Making myc. Curr Top Microbiol Immunol.
71. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis
as a target for cancer therapy: Progress and prospects. Mol 2006;302:1-32.
Cancer. 2013;12:152. doi: 10.1007/3-540-32952-8_1
doi: 10.1186/1476-4598-12-152 83. Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-
Volume 9 Issue 1 (2025) 190 doi: 10.36922/ejmo.7116

