Page 27 - GHES-2-3
P. 27
Global Health Economics and
Sustainability
AI in antibiotic prescribing in Nigeria
Artificial intelligence and antibiotic stewardship. Journal of Kaplan, A.D., Kessler, T.T., Brill, J.C., & Hancock, P.A. (2023).
Antimicrobial Chemotherapy, 77(5):1216-1217. Trust in artificial intelligence: Meta-analytic findings.
Human Factors, 65(2):337-359.
https://doi.org/10.1093/jac/dkac096
https://doi.org/10.1177/00187208211013988
Christaki, E. (2015). New technologies in predicting, preventing,
and controlling emerging infectious diseases. Virulence, Lau, H.J., Lim, C.H., Foo, S.C., & Tan, H.S. (2021). The role of
6(6):558-565. artificial intelligence in the battle against antimicrobial-
resistant bacteria. Current Journal of Genetics, 67:421-429.
https://doi.org/10.1080/21505594.2015.1040975
Marra, A.R., Langford, B.J., Nori, P., & Bearman, G. (2023).
European Centre for Disease Prevention and Control (ECDPC).
(2021). Digital technologies for the surveillance, prevention Revolutionizing antimicrobial stewardship, infection
and control of infectious diseases-a scoping review of the prevention, and public health with artificial intelligence: The
research literature. Sweden: European Centre for Disease middle path. Antimicrobial Stewardship and Healthcare
Prevention and Control (ECDPC). Epidemiology, 3(1):e219.
https://doi.org/10.1017/ash.2023.494
Fanelli, U., Pappalardo, M., Chinè, V., Gismondi, P., Neglia, C.,
Argentiero, A., et al. (2020). Role of artificial intelligence in Okeowo, E., Afolabi, A., Adekambi, A., & Oyegbile, T. (2020).
fighting antimicrobial resistance in pediatrics. Antibiotics, Effectiveness of antibiotic stewardship programs: The role of
9(11):767. artificial intelligence. Journal of Antimicrobial Chemotherapy,
75(10):2657-2659.
https://doi.org/10.3390/antibiotics9110767
Rabiu, I., Auwal, Z., & Muhammad, H.A. (2022a). Detection of
GAO. (2020). Artificial Intelligence in Health Care: Benefits and
Challenges of Technologies to Augment Patient Care. In: carbapenemase producing enterobacteriaceae from clinical
Report to Congressional Requesters Technology Assessment. samples and their susceptibility to conventional antibiotics
United States: GAO, pp.13-29. and medicinal plant extracts. Annals of Experimental and
Molecular Biology, 4(1):000115.
Gille, F., Smith, S., & Mays, N. (2015). Why public trust in health
care systems matters and deserves greater research attention. Rabiu, I., Jamilu, Z., & Ahmad, F.R. (2023). Buruli ulcer
Journal of Health Services Research and Policy, 20(1):62-64. (Mycobacterium ulcerans infection) in Nigeria: An update
on the disease burden in Nigeria. Clinical and Medical
https://doi.org/10.1177/1355819614543161 Research and Studies, 2(1):1-3.
Goldberg, C.B., Adams, L., Blumenthal, D., Brennan, P.F., Rabiu, I., Yusha’u, M., & Abdullahi, A.M. (2022c). Antibacterial
Brown, N., Butte, A.J., et al. (2024). To do no harm-and activity of Colocasia esculenta leaf extracts against multidrug
the most good-with AI in health care. Nature Medicine, resistant extended spectrum Β-lactamase producing
30(3):623-627. Escherichia coli and Klebsiella pneumoniae. Bayero Journal of
https://doi.org/10.1038/s41591-024-02853-7 Pure and Applied Sciences, 13(1):7-12.
International Business Machines (IBM). (2023). IBM’s Watson AI Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E.J. (2022). AI in
Saves Woman’s Life by Diagnosing Rare Form of Leukaemia. health and medicine. Nature Medicine, 28(1):31-38.
Available from: Available from: https://www.huffingtonpost. https://doi.org/10.1038/s41591-021-01614-0
co.uk [Last accessed on 2024 Feb 11].
Rawayau, A.M., Kano1, A.M., Nuhu, I.A., Salisu, A., Imrana, I.,
International Development Research Centre. (2024). Malami, M.A., et al. (2022). In vivo evaluation of antidiabetic
Artificial Intelligence for Development (AI4D) Africa. effects of some polyherbal formulations in alloxan-induced
Available from: https://www.idrc.ca/en/project/artificial- diabetic wistar rats. Tropical Journal of Natural Product
intelligence-development-ai4d-africa:citation[ Research, 6(5):818-825.
oaicite:1]{index=1}:citation[oaicite:0]
{index=0} [Last accessed on 2023 Dec 11]. https://doi.org/10.26538/tjnpr/v6i5.26
Sahu, A., Mishra, J., & Kushwaha, N. (2022). Artificial intelligence
Jaafaru, I.A., Rabiu, I., Idris, K.B., & Abdulfatai, K. (2022).
Determination of inducible clindamycin resistance amongst (AI) in drugs and pharmaceuticals. Combinatorial Chemistry
clinical isolates of methicillin-resistant Staphylococcus aureus and High Throughput Screening, 25(11):1818-1837.
in Kaduna, Nigeria. Journal of Advances in Microbiology, https://doi.org/10.2174/1386207325666211207153943
22(1):32-38.
Sarkar, C., Das, B., Rawat, V.S., Wahlang, J.B., Nongpiur, A.,
Jiménez-Luna, J., Grisoni, F., Weskamp, N., & Schneider, G. Tiewsoh, I., et al. (2023). Artificial intelligence and machine
(2021). Artificial intelligence in drug discovery: Recent learning technology driven modern drug discovery and
advances and future perspectives. Expert Opinion on Drug development. International Journal of Molecular Sciences,
Discovery, 16(9):949-959. 24(3):2026.
https://doi.org/10.1080/17460441.2021.1909567 https://doi.org/10.3390/ijms24032026
Volume 2 Issue 3 (2024) 9 https://doi.org/10.36922/ghes.2602

