Page 72 - GPD-4-2
P. 72

Gene & Protein in Disease                                          X chromosome in sex-biased autoimmunity



               Demethylation of CD40LG on the inactive X in T cells from   and  MDA5  in  interferon-positive  and  interferon-negative
               women with lupus. J Immunol. 2007;179(9):6352-6358.  patients with primary Sjogren’s syndrome. Ann Rheum Dis.
                                                                  2017;76(4):721-730.
               doi: 10.4049/jimmunol.179.9.6352
                                                                  doi: 10.1136/annrheumdis-2016-209589
            94.  Lambert  NC.  Nonendocrine  mechanisms  of  sex  bias  in
               rheumatic diseases. Nat Rev Rheumatol. 2019;15(11):673-686.  105. Cancro MP. Age-associated B cells.  Annu Rev Immunol.
                                                                  2020;38:315-340.
               doi: 10.1038/s41584-019-0307-6
                                                                  doi: 10.1146/annurev-immunol-092419-031130
            95.  Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e
               Sousa  C.  Innate  antiviral  responses  by  means  of  TLR7-  106. Alexopoulou L. Nucleic acid-sensing toll-like receptors:
               mediated  recognition  of  single-stranded  RNA.  Science.   Important players in Sjogren’s syndrome.  Front Immunol.
               2004;303(5663):1529-1531.                          2022;13:980400.
               doi: 10.1126/science.1093616                       doi: 10.3389/fimmu.2022.980400
            96.  Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T,   107. Odhams CA, Roberts AL, Vester SK, et al. Interferon
               Satterthwaite AB, Bolland S. Autoreactive B cell responses   inducible X-linked gene CXorf21 may contribute to sexual
               to RNA-related antigens due to TLR7 gene duplication.   dimorphism in systemic lupus erythematosus. Nat Commun.
               Science. 2006;312(5780):1669-1672.                 2019;10(1):2164.
               doi: 10.1126/science.1124978                       doi: 10.1038/s41467-019-10106-2
            97.  Deane JA, Pisitkun P, Barrett RS, et al. Control of toll-like   108. Bentham J, Morris DL, Graham DSC,  et al. Genetic
               receptor 7 expression is essential to restrict autoimmunity and   association analyses implicate aberrant regulation of innate
               dendritic cell proliferation. Immunity. 2007;27(5):801-810.  and adaptive immunity genes in the pathogenesis of systemic
                                                                  lupus erythematosus. Nat Genet. 2015;47(12):1457-1464.
               doi: 10.1016/j.immuni.2007.09.009
                                                                  doi: 10.1038/ng.3434
            98.  Brown GJ, Canete PF, Wang H,  et al. TLR7 gain-of-
               function genetic variation causes human lupus.  Nature.   109. Mackay M, Oswald M, Sanchez-Guerrero J, et al. Molecular
               2022;605(7909):349-356.                            signatures in systemic lupus erythematosus: Distinction
                                                                  between disease flare and infection.  Lupus Sci Med.
               doi: 10.1038/s41586-022-04642-z
                                                                  2016;3(1):e000159.
            99.  Mishra H, Schlack-Leigers C, Lim EL,  et al. Disrupted
               degradative sorting of TLR7 is associated with human lupus.      doi: 10.1136/lupus-2016-000159
               Sci Immunol. 2024;9(92):eadi9575.               110. Harris VM, Koelsch KA, Kurien BT, et al. Characterization
                                                                  of cxorf21 provides molecular insight into female-bias
               doi: 10.1126/sciimmunol.adi9575
                                                                  immune response in SLE pathogenesis.  Front Immunol.
            100. Souyris M, Cenac C, Azar P,  et al. TLR7 escapes X   2019;10:2160.
               chromosome inactivation in immune cells.  Sci Immunol.
               2018;3(19):eaap8855.                               doi: 10.3389/fimmu.2019.02160
                                                               111. Song Y, Zhou W. Role of TLR7 in the pathogenesis of
               doi: 10.1126/sciimmunol.aap8855
                                                                  primary  Sjogren’s  syndrome.  Clin Exp Rheumatol.  2024;
            101. Wang Y, Roussel-Queval A, Chasson L, et al. TLR7 signaling   42(12):2513-2519.
               drives the development of Sjogren’s syndrome.  Front
               Immunol. 2021;12:676010.                           doi: 10.55563/clinexprheumatol/cmmkod
                                                               112. Harris VM, Scofield RH, Sivils KL. Genetics in Sjogren’s
               doi: 10.3389/fimmu.2021.676010
                                                                  syndrome: Where we are and where we go.  Clin Exp
            102. Karlsen M,  Jakobsen K, Jonsson R, Hammenfors D,   Rheumatol. 2019;118(3, 37 Suppl):234-239.
               Hansen  T,  Appel  S. Expression  of  toll-like  receptors in
               peripheral blood mononuclear cells of patients with primary   113. Martin MU, Wesche H. Summary and comparison of the
               Sjogren’s syndrome. Scand J Immunol. 2017;85(3):220-226.  signaling mechanisms of the toll/interleukin-1 receptor
                                                                  family. Biochim Biophys Acta. 2002;1592(3):265-280.
               doi: 10.1111/sji.12520
                                                                  doi: 10.1016/s0167-4889(02)00320-8
            103.  Zheng L, Zhang Z, Yu C, Yang C. Expression of toll-like
               receptors 7, 8, and 9 in primary Sjogren’s syndrome. Oral Surg   114. Gottipati S, Rao NL, Fung-Leung WP. IRAK1: A  critical
               Oral Med Oral Pathol Oral Radiol Endod. 2010;109(6):844-850.  signaling mediator of innate immunity.  Cell Signal.
                                                                  2008;20(2):269-276.
               doi: 10.1016/j.tripleo.2010.01.006
                                                                  doi: 10.1016/j.cellsig.2007.08.009
            104. Maria NI, Steenwijk EC, IJpma AS,  et al. Contrasting
               expression pattern of RNA-sensing receptors TLR7, RIG-I   115. Jacob CO, Zhu J, Armstrong DL, et al. Identification of
                                                                  IRAK1 as a risk gene with critical role in the pathogenesis


            Volume 4 Issue 2 (2025)                         12                              doi: 10.36922/gpd.8321
   67   68   69   70   71   72   73   74   75   76   77