Page 50 - GTM-3-1
P. 50
Global Translational Medicine Personalized, multi-omics disease detection
Conflict of interest doi: 10.1016/j.cell.2016.11.007
The author is an employee of Novo Nordisk A/S, but the 8. Regev A, Teichmann SA, Lander ES, et al. The human cell
views expressed in this review are solely those of the author atlas. Elife. 2017;6:e27041.
and do not represent the views of Novo Nordisk A/S. This doi: 10.7554/eLife.27041
work was conducted independently and without any 9. Zhang B, Wang J, Wang X, et al. Proteogenomic
influence from Novo Nordisk A/S. Novo Nordisk A/S did characterization of human colon and rectal cancer. Nature.
not provide any financial support for this research. There 2014;513(7518):382-387.
are no other potential conflicts of interest related to this doi: 10.1038/nature13438
research.
10. Mertins P, Mani DR, Ruggles KV, et al. Proteogenomics
Author contributions connects somatic mutations to signalling in breast cancer.
Nature. 2016;534(7605):55-62.
This is a single-authored article.
doi: 10.1038/nature18003
Ethics approval and consent to participate 11. Zhang H, Liu T, Zhang Z, et al. Integrated proteogenomic
Not applicable. characterization of human high-grade serous ovarian
cancer. Cell. 2016;166(3):755-765.
Consent for publication doi: 10.1016/j.cell.2016.05.069
Not applicable. 12. Gillette MA, Satpathy S, Cao S, et al. Proteogenomic
characterization reveals therapeutic vulnerabilities in lung
Availability of data adenocarcinoma. Cell. 2020;182(1):200-225.e35.
Not applicable. doi: 10.1016/j.cell.2020.06.013
References 13. Mundt F, Rajput S, Li S, et al. Mass spectrometry-based
proteomics reveals potential roles of NEK9 and MAP2K4
1. Carter AJ, Kraemer O, Zwick M, Mueller-Fahrnow A, in resistance to PI3K inhibition in triple-negative breast
Arrowsmith CH, Edwards AM. Target 2035: Probing the cancers. Cancer Res. 2018;78(10):2732-2746.
human proteome. Drug Discov Today. 2019;24(11):2111-2115.
doi: 10.1158/0008-5472.CAN-17-1990
doi: 10.1016/j.drudis.2019.06.020
14. Archer TC, Ehrenberger T, Mundt F, et al. Proteomics,
2. Nurk S, Koren S, Rhie A, et al. The complete sequence of a post-translational modifications, and integrative analyses
human genome. Science. 2022;376(6588):44-53. reveal molecular heterogeneity within medulloblastoma
subgroups. Cancer Cell. 2018;34(3):396-410.e8.
doi: 10.1126/science.abj6987
doi: 10.1016/j.ccell.2018.08.004
3. Cancer Genome Atlas Research Network. Comprehensive
genomic characterization defines human glioblastoma genes 15. Heck AJ, Krijgsveld J. Mass spectrometry-based quantitative
and core pathways. Nature. 2008;455(7216):1061-1068. proteomics. Expert Rev Proteomics. 2004;1(3):317-326.
doi: 10.1038/nature07385 doi: 10.1586/14789450.1.3.317
4. Cancer Genome Atlas Research Network. Integrated genomic 16. Pernemalm M, Lehtio J. Mass spectrometry-based plasma
analyses of ovarian carcinoma. Nature. 2011;474(7353):609-615. proteomics: State of the art and future outlook. Expert Rev
Proteomics. 2014;11(4):431-448.
doi: 10.1038/nature10166
doi: 10.1586/14789450.2014.901157
5. Cancer Genome Atlas Network. Comprehensive
molecular portraits of human breast tumours. Nature. 17. Aebersold R, Mann M. Mass-spectrometric exploration
2012;490(7418):61-70. of proteome structure and function. Nature.
2016;537(7620):347-355.
doi: 10.1038/nature11412
doi: 10.1038/nature19949
6. GTEx Consortium. The genotype-tissue expression (GTEx)
project. Nat Genet. 2013;45(6):580-585. 18. Invergo BM, Beltrao P. Reconstructing phosphorylation
signalling networks from quantitative phosphoproteomic
doi: 10.1038/ng.2653
data. Essays Biochem. 2018;62(4):525-534.
7. Stunnenberg HG, International Human Epigenome
Consortium, Hirst M. The international human epigenome doi: 10.1042/EBC20180019
consortium: A blueprint for scientific collaboration and 19. Orre LM, Vesterlund M, Pan Y, et al. SubCellBarCode:
discovery. Cell. 2016;167(5):1145-1149. Proteome-wide mapping of protein localization and
Volume 3 Issue 1 (2024) 10 https://doi.org/10.36922/gtm.2357

