Page 80 - GTM-3-1
P. 80

Global Translational Medicine                                       Evaluating ML models for CAD prediction



            35.  Mao  L.  Matthews  Correlation  Coefficient;  2019. Available   Sensors. 2019;19(15):3400.
               from: https://leimao.github.io/blog/matthews-correlation-     doi: 10.3390/s19153400
               coefficient [Last accessed on 2024 Jan 03].
                                                               42.  Tharwat  A,  Gaber  T,  Ibrahim  A,  Hassanien  AE.  Linear
            36.  Schober P, Boer C, Schwarte LA. Correlation coefficients:   discriminant analysis:  A  detailed tutorial.  AI  Commun.
               Appropriate use and interpretation.  Anesth Analg.   2017;30:169-190.
               2018;126(5):1763-1768.
                                                                  doi: 10.3233/AIC-170729
               doi: 10.1213/ANE.0000000000002864
                                                               43.  Xanthopoulos P, Pardalos PM, Trafalis TB. Linear
            37.  Nahm FS. Receiver operating characteristic curve: Overview   discriminant analysis. In: Robust Data Mining. SpringerBriefs
               and practical use for clinicians.  Korean J Anesthesiol.
               2022;75(1):25-36.                                  in Optimization. New York: Springer; 2013.
                                                                  doi: 10.1007/978-1-4419-9878-1_4
               doi: 10.4097/kja.21209
                                                               44.  Peng C, Cheng Q. Discriminative ridge machine: A classifier
            38.  Viering T, Loog M. The shape of learning curves: A review.
               IEEE Trans Pattern Anal Mach Intell. 2023;45(6):7799-7819.  for high-dimensional data or imbalanced data. IEEE Trans
                                                                  Neural Netw Learn Syst. 2021;32(6):2595-2609.
               doi: 10.1109/TPAMI.2022.3220744
                                                                  doi: 10.1109/TNNLS.2020.3006877
            39.  Bengfort B, Gray L, Bilbro R, et al. Yellowbrick v1.5. Zenodo;
               2022.  Available  from:  https://www.scikit-yb.org/en/latest/  45.  Singh A, Prakash BS, Chandrasekaran K. A Comparison of
               api/model_selection/learning_curve.html [Last accessed on   Linear Discriminant Analysis and Ridge Classifier on Twitter
               2024 Jan 04].                                      Data.  In:  2016 International Conference on Computing,
                                                                  Communication and Automation (ICCCA). Greater Noida,
            40.  Kanade VA.  Logistic Regression: Equation, Assumptions,   India: IEEE; 2016. p. 133-138.
               Types, and Best Practices. Austin: Spiceworks. Available from:
               https://www.spiceworks.com/tech/artificial-intelligence/     doi: 10.1109/CCAA.2016.7813704
               articles/what-is-logistic-regression  [Last  accessed  on   46.  Akella A, Akella S. Machine learning algorithms for
               2022 Apr 18].                                      predicting coronary artery disease: Efforts toward an open
                                                                  source solution. Future Science OA. 2021;7(6):FSO698.
            41.  Rymarczyk T, Kozłowski E, Kłosowski G, Niderla K. Logistic
               regression for machine learning in process tomography.      doi: 10.2144/fsoa-2020-0206









































            Volume 3 Issue 1 (2024)                         13                       https://doi.org/10.36922/gtm.2669
   75   76   77   78   79   80   81   82   83   84   85