Page 79 - GTM-3-1
P. 79
Global Translational Medicine Evaluating ML models for CAD prediction
intelligence in healthcare. Future Healthc J. 2019;6(2):94-98. doi: 10.1016/S0140-6736(22)02079-7
doi: 10.7861/futurehosp.6-2-94 23. Cho SY, Kim SH, Kang SH, et al. Pre-existing and machine
learning-based models for cardiovascular risk prediction.
14. Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Sci Rep. 2021;11(1):8886.
Significance of machine learning in healthcare: Features,
pillars and applications. Int J Intell Netw. 2022;3:58-73. doi: 10.1038/s41598-021-88257-w
doi: 10.1016/j.ijin.2022.05.002 24. Lee YH, Tsai TH, Chen JH, et al. Machine learning of
treadmill exercise test to improve selection for testing for
15. Srinivasan S, Gunasekaran S, Mathivanan SK, Malar MB, coronary artery disease. Atherosclerosis. 2022;340:23-27.
Jayagopal P, Dalu GT. An active learning machine technique
based prediction of cardiovascular heart disease from UCI- doi: 10.1016/j.atherosclerosis.2021.11.028
repository database. Sci Rep. 2023;13:13588. 25. Özbilgin F, Kurnaz Ç, Aydın, E. Prediction of coronary
doi: 10.1038/s41598-023-40717-1 artery disease using machine learning techniques with iris
analysis. Diagnostics. 2023;13(6):1081.
16. Garavand A, Behmanesh A, Aslani N, Sadeghsalehi H,
Ghaderzadeh M. Towards diagnostic aided systems in doi: 10.3390/diagnostics13061081
coronary artery disease detection: A comprehensive 26. Sun Z, Silberstein J, Vaccarezza M. Cardiovascular
multiview survey of the state of the art. Int J Intell Syst. computed tomography in the diagnosis of cardiovascular
2023;2023:6442756. disease: Beyond lumen assessment. J Cardiovasc Dev Dis.
2024;11(1):22.
doi: 10.1155/2023/6442756
doi: 10.3390/jcdd11010022
17. Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T,
Budoff M, Naghavi M. Machine learning outperforms ACC/ 27. Ahsan MM, Siddique Z. Machine learning-based heart
AHA CVD risk calculator in MESA. J Am Heart Assoc. disease diagnosis: A systematic literature review. Artif Intell
2018;7(22):e009476. Med. 2022;128:102289.
doi: 10.1161/JAHA.118.009476 doi: 10.1016/j.artmed.2022.102289
18. Baskaran L, Ying X, Xu Z, et al. Machine learning insight into 28. Janosi A, Steinbrunn W, Pfisterer M, Detrano R. Heart
the role of imaging and clinical variables for the prediction Disease. UCI Machine Learning Repositoryl; 1988.
of obstructive coronary artery disease and revascularization: doi: 10.24432/C52P4X
An exploratory analysis of the CONSERVE study. PLoS One.
2020;15:e0233791. 29. Unknown. (n.d.). Statlog (Heart) [Dataset]. UCI Machine
Learning Repository.
doi: 10.1371/journal.pone.0233791
doi: 10.24432/C57303
19. Al’Aref SJ, Maliakal G, Singh G, et al. Machine learning of
clinical variables and coronary artery calcium scoring for 30. Hicks SA, Strümke I, Thambawita V, et al. On evaluation
the prediction of obstructive coronary artery disease on metrics for medical applications of artificial intelligence. Sci
Rep. 2022;12(1):5979.
coronary computed tomography angiography: Analysis
from the CONFIRM registry. Eur Heart J. 2020;41:359-367. doi: 10.1038/s41598-022-09954-8
doi: 10.1093/eurheartj/ehz565 31. Delgado R, Tibau XA. Why Cohen’s Kappa should be
avoided as performance measure in classification. PLoS One.
20. Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, van der 2019;14(9):e0222916.
Schaar M. Cardiovascular disease risk prediction using
automated machine learning: A prospective study of 423,604 doi: 10.1371/journal.pone.0222916
UK Biobank participants. PLoS One. 2019;14(5):e0213653. 32. Chicco D, Jurman G. The Matthews correlation coefficient
doi: 10.1371/journal.pone.0213653 (MCC) should replace the ROC AUC as the standard
metric for assessing binary classification. BioData Min.
21. Motwani M, Dey D, Berman DS, et al. Machine learning for 2023;16(1):4.
prediction of all-cause mortality in patients with suspected
coronary artery disease: A 5-year multicentre prospective doi: 10.1186/s13040-023-00322-4
registry analysis. Eur Heart J. 2017;38(7):500-507. 33. McHugh ML. Interrater reliability: The kappa statistic.
doi: 10.1093/eurheartj/ehw188 Biochem Med (Zagreb). 2012;22(3):276-282.
22. Forrest IS, Petrazzini BO, Duffy Á, et al. Machine learning- 34. Xia Y. Correlation and association analyses in microbiome
based marker for coronary artery disease: Derivation study integrating multiomics in health and disease. Prog Mol
and validation in two longitudinal cohorts. Lancet. Biol Transl Sci. 2020;171:309-491.
2023;401(10372):215-225. doi: 10.1016/bs.pmbts.2020.04.003
Volume 3 Issue 1 (2024) 12 https://doi.org/10.36922/gtm.2669

