Page 90 - GTM-3-1
P. 90

Global Translational Medicine                                       BCI-FES with static magnetic field in SCI



            8.   Krueger-Beck  E,  Scheeren  EM,  Neto  GNN,  Button  VL,   rehabilitation. Nat Rev Neurol. 2016;12(9):513-525.
               Nohama P. Effects Of Functional Electrical Stimulation      doi: 10.1038/nrneurol.2016.113
               In Artificial Neuromuscular Control.  Rev Neurociên.
               2011;19:530-541.                                18.  Osuagwu  BC,  Wallace  L,  Fraser  M,  Vuckovic  A.
                                                                  Rehabilitation of hand in subacute tetraplegic patients
               doi: 10.4181/RNC.2010.06ip.11
                                                                  based on brain computer interface and functional electrical
            9.   Mukhopadhyay R, Lenka PK, Biswas A, Mahadevappa M.   stimulation: A  randomised pilot study.  J  Neural Eng.
               Evaluation  of  functional  mobility  outcomes  following   2016;13(6):065002.
               electrical stimulation in children with spastic cerebral palsy.      doi: 10.1088/1741-2560/13/6/065002
               J Child Neurol. 2017;32(7):650-656.
                                                               19.  Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ.
               doi: 10.1177/0883073817700604
                                                                  Directed and enhanced neurite growth with pulsed magnetic
            10.  Selfslagh A, Shokur S, Campos DS,  et al. Non-invasive,   field stimulation. Bioelectromagnetics. 2000;21:272-286.
               Brain-controlled functional electrical stimulation for   20.  Fujioka Y, Tanaka N, Nakanishi K,  et al. Magnetic
               locomotion rehabilitation in individuals with Paraplegia. Sci   field-based delivery of human CD1331  cells promotes
               Rep. 2019;9(1):6782.
                                                                  functional recovery after rat spinal cord injury.  Spine.
               doi: 10.1038/s41598-019-43041-9                    2012;7(13):E768-E777.
            11.  Abdalsalam ME, Yusoff MZ, Kamel N,  et al. Mental      doi: 10.1097/BRS.0b013e318246d59c
               Task Motor Imagery Classifications for Noninvasive   21.  Silvestro S, Bramanti P, Trubiani O, Mazzon E. Stem cells
               Brain Computer Interface. In: Proceedings of the   therapy for spinal cord injury: An overview of clinical trials.
               2014  5   International Conference on Intelligent and   Int J Mol Sci. 2020;21:659.
                     th
               Advanced  Systems: Technological  Convergence  for
               Sustainable  Future,  ICIAS  2014  (ICIAS).  United  States:      doi: 10.3390/ijms21020659
               IEEE. 2014. p. 1-5.                             22.  Fukuda TY, Echeimberg JO, Pompeu JE, et al. Root mean

               doi: 10.1109/ICIAS.2014.6869531                    square value of the electromyographic signal in the isometric
                                                                  torque of the quadriceps, hamstrings and brachial biceps
            12.  Hedayatzadeh M, Tehranipour M, Kobravi HR. Motor   muscles in female subjects. J Appl Res. 2010;10:32-39.
               neuron recovery in rats after incomplete spinal cord injury
               using intra-spinal electrical stimulation and stem cell   23.  Júnior PB, Campos DP, Lazzaretti AE, et al. Influence of EEG
               transfusion: A  prelude to human applications.  Med Sci.   channel reduction on lower limb motor imagery during
               2020;24:706-716.                                   electrical stimulation in healthy and paraplegic subjects. Res
                                                                  Biomed Eng. 2022;38:1-11.
            13.  Krueger E, Magri LM, Botelho AS,  et al. Effects of low-
               intensity electrical stimulation and adipose derived stem      doi: 10.1007/s42600-021-00189-6
               cells  transplantation  on  the  time-domain  analysis-based   24.  Broniera Junior PB, Campos DP, Lazzaretti AE, et al. EEG-
               electromyographic signals in dogs with SCI. Neurosci Lett.   FES-Force-MMG closed-loop control systems of a volunteer
               2019;696:38-45.                                    with paraplegia considering motor imagery with fatigue
               doi: 10.1016/j.neulet.2018.12.004                  recognition and automatic shut-off. Biomed Signal Process
                                                                  Control. 2021;68,102662.
            14.  Farrell  K,  Detloff  MR,  Houle  JD. Plastic  changes  after
               spinal  cord  injury.  In: Oxford Research Encyclopedia of      doi: 10.1016/j.bspc.2021.102662
               Neuroscience. Oxford: Oxford University Press; 2019.  25.  Silva CR, De Araújo RS, Albuquerque G, Moioli RC,
               doi: 10.1093/acrefore/9780190264086.013.241        Brasil FL. Interfacing brains to robotic devices-A VRPN
                                                                  communication application. In:  Proceedings of the XXVI
            15.  Leemhuis E, De Gennaro L, Pazzaglia AM. Disconnected   Brazilian Congress on Biomedical Engineering.  Germany:
               body representation: Neuroplasticity following spinal cord   Springer; 2019. p. 597-603.
               injury. J Clin Med. 2019;8(12):2144.
                                                               26.  Nogueira-Neto G, Scheeren E, Krueger E, et al. The influence
               doi: 10.3390/jcm8122144
                                                                  of window length analysis on the time and frequency
            16.  Spieker EL, Wiesener C, Niedeggen A, Wenger N Schauer T.   domain of mechanomyographic and electromyographic
               Motor and sensor recovery in a paraplegic by transcutaneous   signals  of  submaximal fatiguing  contractions.  Open J
               spinal cord stimulation in water. In:  Proceedings on   Biophys. 2013;3(3):178-190.
               Automation in Medical Engineering. Vol. 1; 2020. p. 22.
                                                                  doi: 0.4236/ojbiphy.2013.33021
               doi: 10.18416/AUTOMED.2020
                                                               27.  International Electrotechnical Commission.  IEC 60601-2-
            17.  Chaudhary U, Birbaumer N, Ramos-Murguialday, A.   10: 2012-Medical Electrical Equipment-Part 2-10: Particular
               Brain-computer interfaces for communication and    Requirements for the Basic Safety and Essential Performance


            Volume 3 Issue 1 (2024)                         10                       https://doi.org/10.36922/gtm.2285
   85   86   87   88   89   90   91   92   93   94   95