Page 354 - IJB-10-2
P. 354

International Journal of Bioprinting                                 3D printing with drug for vascular repair




            26.  Moore MJ, Tan RP, Yang N,  Rnjak-Kovacina J, Wise   38.  Munisso MC, Yamaoka T. Circulating endothelial progenitor
               SG.  Bioengineering  artificial  blood vessels from  natural   cells in small-diameter artificial blood vessel. J Artif Organs.
               materials. Trends Biotechnol. 2022;40(6):693-707.  2020;23(1):6-13.
               doi: 10.1016/j.tibtech.2021.11.003                 doi: 10.1007/s10047-019-01114-6
            27.  Wang D, Xu Y, Li Q, Turng L-S. Artificial small-diameter   39.  Zhou X, Nowicki M, Sun H, et al. 3D bioprinting-tunable
               blood vessels: materials, fabrication, surface modification,   small-diameter blood vessels with biomimetic biphasic
               mechanical properties, and bioactive functionalities. J Mater   cell layers.  ACS Appl Mater Interfaces. 2020;12(41):
               Chem B. 2020;8(9):1801-1822.                       45904-45915.
               doi: 10.1039/c9tb01849b                            doi: 10.1021/acsami.0c14871
            28.  Sun D, Zheng Y, Yin T, et al. Coronary drug-eluting stents: from   40.  Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
               design optimization to newer strategies. J Biomed Mater Res A.   collagen to rebuild components of the human heart. Science.
               2014;102(5):1625-40.                               2019;365(6452):482-487.
               doi: 10.1002/jbm.a.34806                           doi: 10.1126/science.aav9051
            29.  Sternberg K, Grabow N, Petersen S,  et al. Advances in   41.  Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D
               coronary stent technology--active drug-loaded stent   bioprinting of cardiac tissue and cardiac stem cell therapy.
               surfaces for prevention of restenosis and improvement of   Transl Res. 2019;211:64-83.
               biocompatibility. Curr Pharm Biotechnol. 2013;14(1):76-90.     doi: 10.1016/j.trsl.2019.04.004
               doi: 10.2174/138920113804805377
                                                               42.  Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-
            30.  Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted   throughput screening: drug screening, disease modeling,
               functional and contractile cardiac tissue constructs.  Acta   and  precision  medicine  applications.  Appl Phys Rev.
               Biomater. 2018;70:48-56.                           2019;6(1):011302.
               doi: 10.1016/j.actbio.2018.02.007                  doi: 10.1063/1.5056188
            31.  Neumann B, Baror R, Zhao C, et al. Metformin restores CNS   43.  Vanderburgh J, Sterling  JA,  Guelcher SA. 3D  printing
               remyelination capacity by rejuvenating aged stem cells. Cell   of tissue engineered constructs for in vitro modeling of
               Stem Cell. 2019;25(4):473-485.e8.                  disease progression and drug screening. Ann Biomed Eng.
               doi: 10.1016/j.stem.2019.08.015                    2017;45(1):164-179.
            32.  Jang  WB,  Park  JH,  Ji  ST,  et  al.  Cytoprotective  roles  of  a      doi: 10.1007/s10439-016-1640-4
               novel compound, MHY-1684, against hyperglycemia-  44.  Gonzalez LM, Moeser AJ, Blikslager AT. Animal models of
               induced oxidative stress and mitochondrial dysfunction   ischemia-reperfusion-induced intestinal injury: progress
               in human cardiac progenitor cells. Oxid Med Cell Longev.   and promise for translational research.  Am J Physiol
               2018;2018:4528184.                                 Gastrointest Liver Physiol. 2015;308(2):G63-75.
               doi: 10.1155/2018/4528184                          doi: 10.1152/ajpgi.00112.2013
            33.  Mohseni N, Roshan R, Naderi S, Behdani M, Kazemi-Lomedasht   45.  Rahbar Saadat Y, Hosseiniyan Khatibi SM, Sani A, Vahed SZ,
               F. In vitro combination therapy of pathologic angiogenesis using   Ardalan M. Ischemic tubular injury: oxygen-sensitive signals
               anti-vascular endothelial growth factor and anti-neuropilin-1   and metabolic reprogramming.  Inflammopharmacology.
               nanobodies. Iran J Basic Med Sci. 2020;23(10):1335-1339.  2023;31(4):1657-1669.
               doi: 10.22038/ijbms.2020.47782.11000               doi: 10.1007/s10787-023-01232-x
            34.  Niklason LE, Lawson JH. Bioengineered human blood   46.  Guan Y, Gao N, Niu H,  Dang Y, Guan J. Oxygen-release
               vessels. Science. 2020;370(6513):eaaw8682.         microspheres capable of releasing oxygen in response to
               doi: 10.1126/science.aaw8682                       environmental oxygen level to improve stem cell survival
            35.  Papaioannou TG, Manolesou D, Dimakakos E,  Tsoucalas   and tissue regeneration in ischemic hindlimbs.  J Control
               G,  Vavuranakis  M,  Tousoulis  D.  3D  bioprinting  methods   Release. 2021;331:376-389.
               and techniques: applications on artificial blood vessel      doi: 10.1016/j.jconrel.2021.01.034
               fabrication. Acta Cardiol Sin. 2019;35(3):284-289.  47.  Dambrova M,  Zuurbier CJ,  Borutaite V,  Liepinsh E,
               doi: 10.6515/ACS.201905_35(3).20181115A            Makrecka-Kuka  M.  Energy  substrate  metabolism  and
            36.  Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood   mitochondrial oxidative stress in cardiac ischemia/
               vessel: the Holy Grail of peripheral vascular surgery. J Vasc   reperfusion injury. Free Radic Biol Med. 2021;165:24-37.
               Surg. 2005;41(2):349-354.                          doi: 10.1016/j.freeradbiomed.2021.01.036
               doi: 10.1016/j.jvs.2004.12.026
                                                               48.  Rojas-Morales P, Leon-Contreras JC, Sanchez-Tapia M, et
            37.  Colosi  C,  Shin  SR,  Manoharan  V,  et  al.  Microfluidic   al. A ketogenic diet attenuates acute and chronic ischemic
               bioprinting of heterogeneous 3D tissue constructs using   kidney injury and reduces markers of oxidative stress and
               low-viscosity bioink. Adv Mater. 2016;28(4):677-684.   inflammation. Life Sci. 2022;289:120227.
               doi: 10.1002/adma.201503310                        doi: 10.1016/j.lfs.2021.120227

            Volume 10 Issue 2 (2024)                       346                                doi: 10.36922/ijb.1857
   349   350   351   352   353   354   355   356   357   358   359