Page 354 - IJB-10-2
P. 354
International Journal of Bioprinting 3D printing with drug for vascular repair
26. Moore MJ, Tan RP, Yang N, Rnjak-Kovacina J, Wise 38. Munisso MC, Yamaoka T. Circulating endothelial progenitor
SG. Bioengineering artificial blood vessels from natural cells in small-diameter artificial blood vessel. J Artif Organs.
materials. Trends Biotechnol. 2022;40(6):693-707. 2020;23(1):6-13.
doi: 10.1016/j.tibtech.2021.11.003 doi: 10.1007/s10047-019-01114-6
27. Wang D, Xu Y, Li Q, Turng L-S. Artificial small-diameter 39. Zhou X, Nowicki M, Sun H, et al. 3D bioprinting-tunable
blood vessels: materials, fabrication, surface modification, small-diameter blood vessels with biomimetic biphasic
mechanical properties, and bioactive functionalities. J Mater cell layers. ACS Appl Mater Interfaces. 2020;12(41):
Chem B. 2020;8(9):1801-1822. 45904-45915.
doi: 10.1039/c9tb01849b doi: 10.1021/acsami.0c14871
28. Sun D, Zheng Y, Yin T, et al. Coronary drug-eluting stents: from 40. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of
design optimization to newer strategies. J Biomed Mater Res A. collagen to rebuild components of the human heart. Science.
2014;102(5):1625-40. 2019;365(6452):482-487.
doi: 10.1002/jbm.a.34806 doi: 10.1126/science.aav9051
29. Sternberg K, Grabow N, Petersen S, et al. Advances in 41. Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D
coronary stent technology--active drug-loaded stent bioprinting of cardiac tissue and cardiac stem cell therapy.
surfaces for prevention of restenosis and improvement of Transl Res. 2019;211:64-83.
biocompatibility. Curr Pharm Biotechnol. 2013;14(1):76-90. doi: 10.1016/j.trsl.2019.04.004
doi: 10.2174/138920113804805377
42. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-
30. Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted throughput screening: drug screening, disease modeling,
functional and contractile cardiac tissue constructs. Acta and precision medicine applications. Appl Phys Rev.
Biomater. 2018;70:48-56. 2019;6(1):011302.
doi: 10.1016/j.actbio.2018.02.007 doi: 10.1063/1.5056188
31. Neumann B, Baror R, Zhao C, et al. Metformin restores CNS 43. Vanderburgh J, Sterling JA, Guelcher SA. 3D printing
remyelination capacity by rejuvenating aged stem cells. Cell of tissue engineered constructs for in vitro modeling of
Stem Cell. 2019;25(4):473-485.e8. disease progression and drug screening. Ann Biomed Eng.
doi: 10.1016/j.stem.2019.08.015 2017;45(1):164-179.
32. Jang WB, Park JH, Ji ST, et al. Cytoprotective roles of a doi: 10.1007/s10439-016-1640-4
novel compound, MHY-1684, against hyperglycemia- 44. Gonzalez LM, Moeser AJ, Blikslager AT. Animal models of
induced oxidative stress and mitochondrial dysfunction ischemia-reperfusion-induced intestinal injury: progress
in human cardiac progenitor cells. Oxid Med Cell Longev. and promise for translational research. Am J Physiol
2018;2018:4528184. Gastrointest Liver Physiol. 2015;308(2):G63-75.
doi: 10.1155/2018/4528184 doi: 10.1152/ajpgi.00112.2013
33. Mohseni N, Roshan R, Naderi S, Behdani M, Kazemi-Lomedasht 45. Rahbar Saadat Y, Hosseiniyan Khatibi SM, Sani A, Vahed SZ,
F. In vitro combination therapy of pathologic angiogenesis using Ardalan M. Ischemic tubular injury: oxygen-sensitive signals
anti-vascular endothelial growth factor and anti-neuropilin-1 and metabolic reprogramming. Inflammopharmacology.
nanobodies. Iran J Basic Med Sci. 2020;23(10):1335-1339. 2023;31(4):1657-1669.
doi: 10.22038/ijbms.2020.47782.11000 doi: 10.1007/s10787-023-01232-x
34. Niklason LE, Lawson JH. Bioengineered human blood 46. Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release
vessels. Science. 2020;370(6513):eaaw8682. microspheres capable of releasing oxygen in response to
doi: 10.1126/science.aaw8682 environmental oxygen level to improve stem cell survival
35. Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas and tissue regeneration in ischemic hindlimbs. J Control
G, Vavuranakis M, Tousoulis D. 3D bioprinting methods Release. 2021;331:376-389.
and techniques: applications on artificial blood vessel doi: 10.1016/j.jconrel.2021.01.034
fabrication. Acta Cardiol Sin. 2019;35(3):284-289. 47. Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E,
doi: 10.6515/ACS.201905_35(3).20181115A Makrecka-Kuka M. Energy substrate metabolism and
36. Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood mitochondrial oxidative stress in cardiac ischemia/
vessel: the Holy Grail of peripheral vascular surgery. J Vasc reperfusion injury. Free Radic Biol Med. 2021;165:24-37.
Surg. 2005;41(2):349-354. doi: 10.1016/j.freeradbiomed.2021.01.036
doi: 10.1016/j.jvs.2004.12.026
48. Rojas-Morales P, Leon-Contreras JC, Sanchez-Tapia M, et
37. Colosi C, Shin SR, Manoharan V, et al. Microfluidic al. A ketogenic diet attenuates acute and chronic ischemic
bioprinting of heterogeneous 3D tissue constructs using kidney injury and reduces markers of oxidative stress and
low-viscosity bioink. Adv Mater. 2016;28(4):677-684. inflammation. Life Sci. 2022;289:120227.
doi: 10.1002/adma.201503310 doi: 10.1016/j.lfs.2021.120227
Volume 10 Issue 2 (2024) 346 doi: 10.36922/ijb.1857

