Page 387 - IJB-10-2
P. 387

International Journal of Bioprinting                              AM evaluation of medical device companies




               Ti6Al4V produced by selective laser melting.  Adv Eng   27.  Xu W, Sun S, Elambasseril J, Liu Q, Brandt M, Qian M. Ti-
               Mater. 2012;14(1–2):92-97.                         6Al-4V additively manufactured by selective laser melting
               doi: 10.1002/adem.201100233                        with superior mechanical properties.  JOM. 2015;67(3):
                                                                  668-673.
            17.  Vrancken B, Thijs L, Kruth JP, Humbeeck JV. Heat      doi: 10.1007/s11837-015-1297-8
               treatment of Ti6Al4V produced by selective laser melting:
               microstructure and mechanical properties. J Alloys Compd.    28.  Bertsch KM, Voisin T, Forien JB, et al. Critical differences
               2012;541:177-185.                                  between electron beam melted and selective laser melted Ti-
               doi: 10.1016/j.jallcom.2012.07.022                 6Al-4 V. Mater Des. 2022;216:110533.
                                                                  doi: 10.1016/j.matdes.2022.110533
            18.  Vilaro T, Colin C, Bartout D. As-fabricated and heat-treated
               microstructures of the Ti-6Al-4V alloy processed by selective   29.  Wu GQ, Shi CL, Sha W, Sha AX, Jiang HR. Effect of
               laser melting. Metall Mater Trans A. 2011;42(10):3190-3199.   microstructure on the fatigue properties of Ti-6Al-4V
               doi: 10.1007/s11661-011-0731-y                     titanium alloys. Mater Des. 2013;46:668-674.
                                                                  doi: 10.1016/j.matdes.2012.10.059
            19.  Li  SJ,  Murr  LE,  Cheng  XY,  et  al.  Compression  fatigue
               behavior of Ti-6Al-4V mesh arrays fabricated by electron   30.  Frkan M, Konecna R, Nicoletto G, Kunz L. Microstructure
               beam melting. Acta Mater. 2012;60(3):793-802.      and fatigue performance of SLM-fabricated Ti6Al4V alloy
               doi: 10.1016/j.actamat.2011.10.051                 after different stress-relief heat treatments.  Transp Res
                                                                  Procedia. 2019;40(1):24-29.
            20.  Fotovvati B, Namdari N, Dehghanghadikolaei A. Fatigue      doi: 10.1016/j.trpro.2019.07.005
               performance of selective laser melted Ti6Al4V components:
               State of the art. Mater Res Express. 2019;6(1):012002.   31.  Ran J, Jiang F, Sun X,  Chen Z, Tian C, Zhao H. Microstructure
               doi: 10.1088/2053-1591/aae10e                      and mechanical properties of ti-6al-4v fabricated by electron
                                                                  beam melting. Crystals. 2020;10(11):1-18.
            21.  Vaneker T, Bernard A, Moroni G, Gibson I, Zhang Y. Design      doi: 10.3390/cryst10110972
               for additive manufacturing: Framework and methodology.
               CIRP Ann. 2020;69(2):578-599.                   32.  Gonzalez Alvarez A, Dovgalski L, Evans PL, Key S.
               doi: 10.1016/j.cirp.2020.05.006                    Development and surgical application of a custom implant
                                                                  that enables a vertical vector of mandibular distraction. Proc
            22.  Coelho  PG,  Hollister  SJ,  Flanagan  CL,  Fernandes  PR.   Inst Mech Eng H. 2020;234(10):1172-1180.
               Bioresorbable scaffolds for bone tissue engineering: Optimal      doi: 10.1177/0954411920940848
               design, fabrication, mechanical testing and scale-size effects
               analysis. Med Eng Phys. 2015;37(3):287-296.     33.  Gonzalez Alvarez A, Evans PL, Dovgalski L, Goldsmith I.
               doi: 10.1016/j.medengphy.2015.01.004               Design, additive manufacture and clinical application of a
                                                                  patient-specific titanium implant to anatomically reconstruct
            23.  Kingsak M, Maturavongsadit P, Jiang H, Wang Q. Cellular   a large chest wall defect.  Rapid Prototyp J. 2021;27(2):
               responses to nanoscale substrate topography of TiO2   304-310.
               nanotube arrays: cell morphology and adhesion. Biomater      doi: 10.1108/RPJ-08-2019-0208
               Transl. 2022;3(3):221-233.
               doi: 10.12336/biomatertransl.2022.03.006        34.  Gonzalez Alvarez A, Ananth S, Dovgalski L, Evans PL.
                                                                  Custom three-dimensional printed orbital plate composed
            24.  Liu QC, Elambasseril J, Sun SJ, Leary M, Brandt M, Sharp   of two joined parts with variable thickness for a large orbital
               PK. The effect of manufacturing defects on the fatigue   floor reconstruction after post-traumatic zygomatic fixation.
               behaviour of Ti-6Al-4V specimens fabricated using selective   Br J Oral Maxillofac Surg. 2020;58(10):e341-e342.
               laser melting. Adv Mater Res. 2014;891–892:1519-1524.      doi: 10.1016/j.bjoms.2020.08.082
               doi: 10.4028/www.scientific.net/AMR.891-892.1519
                                                               35.  Contaldi V, Corrado P, Del Re F, et al. Direct metal laser
            25.  Seth P, Jha JS, Alankar A, Mishra SK. Alpha-case formation   sintering of Ti-6Al-4V parts with reused powder. Int J Adv
               in Ti–6Al–4V in a different oxidizing environment and its   Manuf Technol. 2022;120(1–2):1013-1021.
               effect on  tensile  and  fatigue  crack growth  behavior.  Oxid      doi: 10.1007/s00170-022-08807-y
               Met. 2022;97(1–2):77-95.
               doi: 10.1007/s11085-021-10079-y                 36.  Emminghaus N, Bernhard R, Hermsdorf J, Kaierle S.
                                                                  Residual oxygen content and powder recycling: Effects on
            26.  Lee YS, Cho S, Ji C, Jo I, Choi M. Impact of morphology on   microstructure and mechanical properties of additively
               the high cycle fatigue behavior of Ti-6Al-4V for aerospace.   manufactured Ti-6Al-4V parts.  Int J  Adv Manuf Technol.
               Metals (Basel). 2022;12(10):1722.                  2022; 121(5–6):3685-3701.
               doi: 10.3390/met12101722                           doi: 10.1007/s00170-022-09503-7








            Volume 10 Issue 2 (2024)                       379                                doi: 10.36922/ijb.0140
   382   383   384   385   386   387   388   389   390   391   392