Page 387 - IJB-10-2
P. 387
International Journal of Bioprinting AM evaluation of medical device companies
Ti6Al4V produced by selective laser melting. Adv Eng 27. Xu W, Sun S, Elambasseril J, Liu Q, Brandt M, Qian M. Ti-
Mater. 2012;14(1–2):92-97. 6Al-4V additively manufactured by selective laser melting
doi: 10.1002/adem.201100233 with superior mechanical properties. JOM. 2015;67(3):
668-673.
17. Vrancken B, Thijs L, Kruth JP, Humbeeck JV. Heat doi: 10.1007/s11837-015-1297-8
treatment of Ti6Al4V produced by selective laser melting:
microstructure and mechanical properties. J Alloys Compd. 28. Bertsch KM, Voisin T, Forien JB, et al. Critical differences
2012;541:177-185. between electron beam melted and selective laser melted Ti-
doi: 10.1016/j.jallcom.2012.07.022 6Al-4 V. Mater Des. 2022;216:110533.
doi: 10.1016/j.matdes.2022.110533
18. Vilaro T, Colin C, Bartout D. As-fabricated and heat-treated
microstructures of the Ti-6Al-4V alloy processed by selective 29. Wu GQ, Shi CL, Sha W, Sha AX, Jiang HR. Effect of
laser melting. Metall Mater Trans A. 2011;42(10):3190-3199. microstructure on the fatigue properties of Ti-6Al-4V
doi: 10.1007/s11661-011-0731-y titanium alloys. Mater Des. 2013;46:668-674.
doi: 10.1016/j.matdes.2012.10.059
19. Li SJ, Murr LE, Cheng XY, et al. Compression fatigue
behavior of Ti-6Al-4V mesh arrays fabricated by electron 30. Frkan M, Konecna R, Nicoletto G, Kunz L. Microstructure
beam melting. Acta Mater. 2012;60(3):793-802. and fatigue performance of SLM-fabricated Ti6Al4V alloy
doi: 10.1016/j.actamat.2011.10.051 after different stress-relief heat treatments. Transp Res
Procedia. 2019;40(1):24-29.
20. Fotovvati B, Namdari N, Dehghanghadikolaei A. Fatigue doi: 10.1016/j.trpro.2019.07.005
performance of selective laser melted Ti6Al4V components:
State of the art. Mater Res Express. 2019;6(1):012002. 31. Ran J, Jiang F, Sun X, Chen Z, Tian C, Zhao H. Microstructure
doi: 10.1088/2053-1591/aae10e and mechanical properties of ti-6al-4v fabricated by electron
beam melting. Crystals. 2020;10(11):1-18.
21. Vaneker T, Bernard A, Moroni G, Gibson I, Zhang Y. Design doi: 10.3390/cryst10110972
for additive manufacturing: Framework and methodology.
CIRP Ann. 2020;69(2):578-599. 32. Gonzalez Alvarez A, Dovgalski L, Evans PL, Key S.
doi: 10.1016/j.cirp.2020.05.006 Development and surgical application of a custom implant
that enables a vertical vector of mandibular distraction. Proc
22. Coelho PG, Hollister SJ, Flanagan CL, Fernandes PR. Inst Mech Eng H. 2020;234(10):1172-1180.
Bioresorbable scaffolds for bone tissue engineering: Optimal doi: 10.1177/0954411920940848
design, fabrication, mechanical testing and scale-size effects
analysis. Med Eng Phys. 2015;37(3):287-296. 33. Gonzalez Alvarez A, Evans PL, Dovgalski L, Goldsmith I.
doi: 10.1016/j.medengphy.2015.01.004 Design, additive manufacture and clinical application of a
patient-specific titanium implant to anatomically reconstruct
23. Kingsak M, Maturavongsadit P, Jiang H, Wang Q. Cellular a large chest wall defect. Rapid Prototyp J. 2021;27(2):
responses to nanoscale substrate topography of TiO2 304-310.
nanotube arrays: cell morphology and adhesion. Biomater doi: 10.1108/RPJ-08-2019-0208
Transl. 2022;3(3):221-233.
doi: 10.12336/biomatertransl.2022.03.006 34. Gonzalez Alvarez A, Ananth S, Dovgalski L, Evans PL.
Custom three-dimensional printed orbital plate composed
24. Liu QC, Elambasseril J, Sun SJ, Leary M, Brandt M, Sharp of two joined parts with variable thickness for a large orbital
PK. The effect of manufacturing defects on the fatigue floor reconstruction after post-traumatic zygomatic fixation.
behaviour of Ti-6Al-4V specimens fabricated using selective Br J Oral Maxillofac Surg. 2020;58(10):e341-e342.
laser melting. Adv Mater Res. 2014;891–892:1519-1524. doi: 10.1016/j.bjoms.2020.08.082
doi: 10.4028/www.scientific.net/AMR.891-892.1519
35. Contaldi V, Corrado P, Del Re F, et al. Direct metal laser
25. Seth P, Jha JS, Alankar A, Mishra SK. Alpha-case formation sintering of Ti-6Al-4V parts with reused powder. Int J Adv
in Ti–6Al–4V in a different oxidizing environment and its Manuf Technol. 2022;120(1–2):1013-1021.
effect on tensile and fatigue crack growth behavior. Oxid doi: 10.1007/s00170-022-08807-y
Met. 2022;97(1–2):77-95.
doi: 10.1007/s11085-021-10079-y 36. Emminghaus N, Bernhard R, Hermsdorf J, Kaierle S.
Residual oxygen content and powder recycling: Effects on
26. Lee YS, Cho S, Ji C, Jo I, Choi M. Impact of morphology on microstructure and mechanical properties of additively
the high cycle fatigue behavior of Ti-6Al-4V for aerospace. manufactured Ti-6Al-4V parts. Int J Adv Manuf Technol.
Metals (Basel). 2022;12(10):1722. 2022; 121(5–6):3685-3701.
doi: 10.3390/met12101722 doi: 10.1007/s00170-022-09503-7
Volume 10 Issue 2 (2024) 379 doi: 10.36922/ijb.0140

