Page 304 - IJB-10-4
P. 304

International Journal of Bioprinting                                      Analysis of PVA-silk fibroin stents




            33.  Lyu Y, Liu Y, He H, Wang H. Application of silk-fibroin-     doi: 10.1007/S10554-017-1173-4
               based hydrogels in tissue engineering. Gels. 2023;9(5):431.  43.  Ding C, Ma J, Teng Y, Chen S. The effect of plasma treatment
               doi: 10.3390/GELS9050431
                                                                  on the mechanical and biological properties of polyurethane
            34.  Li X, Qin J, Ma J. Silk fibroin/poly (vinyl alcohol) blend   artificial blood vessel. Materials (Basel). 2023;16(22):7231.
               scaffolds for controlled delivery of curcumin.  Regen      doi: 10.3390/MA16227231
               Biomater. 2015;2(2):97-105.                     44.  Yang CC, Lee YJ. Preparation of the acidic PVA/MMT
               doi: 10.1093/RB/RBV008
                                                                  nanocomposite polymer membrane for the direct
            35.  Jin D, Takai S, Li Z, et al. Outside fibroblasts play a key   methanol fuel cell (DMFC). Thin Solid Films. 2009;517(17):
               role in the development of inner neointima after the   4735-4740.
               implantation of polytetrafluoroethylene grafts. J Pharmacol      doi: 10.1016/J.TSF.2009.03.138
               Sci. 2012;119(2):139-149.                       45.  Yuan Q, Yao J, Chen X, Huang L, Shao Z. The preparation
               doi: 10.1254/JPHS.11242FP
                                                                  of high performance silk fiber/fibroin composite. Polymer
            36.  Wang GX, Deng XY, Tang CJ, et al. The adhesive properties of   (Guildf). 2010;51(21):4843-4849.
               endothelial cells on endovascular stent coated by substrates      doi: 10.1016/J.POLYMER.2010.08.042
               of poly-l-lysine and fibronectin.  Artif  Cells  Blood  Substit   46.  Niu C, Li X, Wang Y, Liu X, Shi J, Wang X. Design
               Immobil Biotechnol. 2006;34(1):11-25.              and performance of a poly(vinyl alcohol)/silk fibroin
               doi: 10.1080/10731190500428283
                                                                  enzymatically crosslinked semi-interpenetrating hydrogel
            37.  Shirota T, Yasui H, Shimokawa H, Matsuda T. Fabrication of   for  a  potential  hydrophobic  drug  delivery.  RSC  Adv.
               endothelial progenitor cell (EPC)-seeded intravascular stent   2019;9(70):41074-41082.
               devices and in vitro endothelialization on hybrid vascular      doi: 10.1039/C9RA09344C
               tissue. Biomaterials. 2003;24(13):2295-2302.    47.  Wang X, Yucel T, Lu Q, Hu X, Kaplan DL. Silk nanospheres
               doi: 10.1016/S0142-9612(03)00042-5
                                                                  and microspheres from silk/pva blend films for drug
            38.  Weber J, Weber M, Feile A, Schlensak C, Avci-Adali M.   delivery. Biomaterials. 2010;31(6):1025-1035.
               Development of an in vitro blood vessel model using      doi: 10.1016/J.BIOMATERIALS.2009.11.002
               autologous endothelial cells generated from footprint-free   48.  Bosch A, Casanova-Batlle E, Rodríguez-Rego JM, Ciurana J,
               hipscs to analyze interactions of the endothelium with blood   Guerra AJ. Silk fibroin dip coating as drug delivery material
               cell components and vascular implants. Cells. 2023;12(9):1217.  for medical devices. Key Eng Mater. 2023;957:113-121.
               doi: 10.3390/CELLS12091217
                                                                  doi: 10.4028/P-P004JO
            39.  Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J. 3D-printed   49.  Chausse V, Iglesias C, Bou-Petit E, Ginebra MP, Pegueroles
               PCL/PLA composite stents: towards a new solution to   M. Chemical vs thermal accelerated hydrolytic degradation
               cardiovascular problems. Materials (Basel). 2018;11(9):1679.  of  3D-printed  PLLA/PLCL  bioresorbable  stents:
               doi: 10.3390/MA11091679
                                                                  Characterization and influence of sterilization. Polym Test.
            40.  Chausse V, Mas-Moruno C, Martin-Gómez H, et al.   2023;117:107817.
               Functionalization of 3D printed polymeric bioresorbable stents      doi: 10.1016/J.POLYMERTESTING.2022.107817
               with a dual cell-adhesive peptidic platform combining RGDS   50.  Wu  Z,  Zhao  J, Wu  W,  et  al.  Radial  compressive  property
               and YIGSR sequences. Biomater Sci. 2023;11(13):4602-4615.  and the proof-of-concept study for realizing self-expansion
               doi: 10.1039/D3BM00458A
                                                                  of 3D printing polylactic acid vascular stents with
            41.  Kang CK, Lim WH, Kyeong S, et al. Fabrication of   negative  Poisson’s ratio structure.  Materials (Basel). 2018;
               biofunctional stents with endothelial progenitor cell   11(8):1357.
               specificity for vascular re-endothelialization. Colloids Surf B      doi: 10.3390/MA11081357
               Biointerfaces. 2013;102:744-751.                51.  Chelazzi D, Badillo-Sanchez D, Giorgi R, Cincinelli A,
               doi: 10.1016/J.COLSURFB.2012.09.008
                                                                  Baglioni P. Self-regenerated silk fibroin with controlled
            42.  Tenekecioglu E, Torii R, Bourantas C, et al. The effect of strut   crystallinity for the reinforcement of silk. J Colloid Interface
               thickness on shear stress distribution in a preclinical model.   Sci. 2020;576:230-240.
               Int J Cardiovasc Imaging. 2017;33(11):1675-1676.     doi: 10.1016/J.JCIS.2020.04.114













            Volume 10 Issue 4 (2024)                       296                                doi: 10.36922/ijb.3444
   299   300   301   302   303   304   305   306   307   308   309