Page 431 - IJB-10-4
P. 431

International Journal of Bioprinting                               Pregabalin impact on 3D neuronal models




            11.  Tassone DM, Boyce E, Guyer J, Nuzum D. Pregabalin:   and interpretation of assays for monitoring autophagy.
               a novel γ-aminobutyric acid analogue in the treatment   Autophagy. 2012;8(4):445–544
               of  neuropathic  pain,  partial-onset seizures,  and anxiety      doi: 10.4161/auto.19496
               disorders. Clin Ther. 2007;29(1):26-48.         23.  Bedogni F, Hodge RD, Elsen GE, et al. Tbr1 regulates
               doi: 10.1016/j.clinthera.2007.01.013
                                                                  regional and laminar identity of postmitotic neurons in
            12.  Dudukina E, Szépligeti SK, Karlsson P, et al. Prenatal exposure   developing neocortex. Proc Natl Acad Sci USA. 2010;107(29):
               to pregabalin, birth outcomes and neurodevelopment – a   13129-13134.
               population-based cohort study in four Nordic countries.      doi: 10.1073/pnas.1002285107
               Drug Saf. 2023;46(7):661-675.                   24.  Hevner RF, Shi L, Justice N, et al. Tbr1 regulates differentiation
               doi: 10.1007/s40264-023-01307-2                    of the preplate and layer 6. Neuron. 2001;29(2):353-366.
            13.  Winterfeld U, Merlob P, Baud D, et al. Pregnancy outcome      doi: 10.1016/s0896-6273(01)00211-2
               following maternal exposure to pregabalin may call for   25.  Abdelrahman  S, Ge  R, Susapto  HH,  et  al.  The  impact  of
               concern. Neurology. 2016;86(24):2251-2257.         mechanical cues on the metabolomic and transcriptomic
               doi: 10.1212/WNL.0000000000002767                  profiles  of  human  dermal fibroblasts  cultured  in
            14.  Richardson JL, Damkier P, Diav-Citrin O, et al. A critical   ultrashort self-assembling peptide 3d scaffolds. ACS Nano.
               appraisal of controlled studies investigating malformation   2023;17(15):14508-14531.
               risks following pregabalin use in early pregnancy. Br J Clin      doi: 10.1021/acsnano.3c01176
               Pharmacol. 2023;89(2):630-640.                  26.  Hauser CA, Deng R, Mishra A, et al. Natural tri- to
               doi: 10.1111/bcp.15607                             hexapeptides self-assemble in water to amyloid beta-type
            15.  Black E, Khor KE, Kennedy D, et al. Medication use and   fiber  aggregates  by  unexpected  alpha-helical  intermediate
               pain management in pregnancy: a critical review. Pain Pract.   structures. Proc Natl Acad Sci USA. 2011;108(4):1361-1366.
               2019;19(8):875-899.                                doi: 10.1073/pnas.1014796108
               doi: 10.1111/papr.12814.                        27.  Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides
            16.  Bonnet U, Scherbaum N. How addictive are gabapentin and   self-assemble to strong temperature-resistant helical fibers
               pregabalin? A systematic review. Eur Neuropsychopharmacol.   in scaffolds suitable for tissue engineering.  Nano  Today.
               2017;27(12):1185-1215.                             2011;6(3):232-239.
               doi: 10.1016/j.euroneuro.2017.08.430               doi: 10.1016/j.nantod.2011.05.001
            17.  Patorno E, Bateman BT, Huybrechts KF, et al. Pregabalin   28.  Abdelrahman S, Alsanie WF, Khan ZN, et al. A Parkinson’s
               use early in pregnancy and the risk of major congenital   disease  model composed  of 3D  bioprinted  dopaminergic
               malformations. Neurology. 2017;88(21):2020-2025.   neurons  within  a  biomimetic  pep-tide  scaffold.
               doi: 10.1212/WNL.0000000000003959                  Biofabrication. 2022;14(4):044103.
                                                                  doi: 10.1088/1758-5090/ac7eec.
            18.  Althobaiti YS, Almutairi FM, Alshehri FS, et al. Involvement
               of the dopaminergic system in the reward-related behavior   29.  Susapto HH, Alhattab D, Abdelrahman S, et al. ultrashort
               of pregabalin. Sci Rep. 2021;11(1):10577.          peptide bioinks support automated printing of large-scale
               doi: 10.1038/s41598-021-88429-8                    constructs assuring long-term survival of printed tissue
                                                                  constructs. Nano Lett. 2021;21(7):2719-2729.
            19.  Alsanie WF, Alhomrani M, Gaber A, et al. The effects      doi: 10.1021/acs.nanolett.0c04426
               of prenatal exposure to pregabalin on the development
               of ventral midbrain dopaminergic neurons.  Cells.   30.  Alhattab DM, Isaioglou I, Alshehri S, et al. Fabrication of
               2022;11(5);852.                                    a three-dimensional bone marrow niche-like acute myeloid
               doi: 10.3390/cells11050852                         leukemia disease model by an automated and controlled
                                                                  process using a robotic multicellular bioprinting system.
            20.  Lemon RN, Baker SN, Kraskov A. Classification of cortical   Biomater Res. 2023;27(1):111.
               neurons by spike shape and the identification of pyramidal      doi: 10.1186/s40824-023-00457-9.
               neurons. Cereb Cortex. 2021;31(11):5131-5138.
               doi: 10.1093/cercor/bhab147.                    31.  Hayashi H, Yamada M, Kumai J, Takagi N, Nomizu, M.
                                                                  Biological activities of laminin-111-derived peptide-
            21.  Yook C, Kim K, Kim D, et al. A TBR1-K228E mutation   chitosan  matrices  in a  primary culture  of  rat  cortical
               induces Tbr1 upregulation, altered cortical distribution of   neurons. Arch Biochem Biophys. 2018;648:53-59.
               interneurons, increased inhibitory synaptic transmission,      doi: 10.1016/j.abb.2018.04.010
               and autistic-like behavioral deficits in mice.  Front Mol   32.  Alsanie WF, Bahri OA, Habeeballah HH, et al. Generating
               Neurosci. 2019;12:241.                             homogenous cortical preplate and deep-layer neurons using
               doi: 10.3389/fnmol.2019.00241
                                                                  a  combination  of  2D  and  3D  differentiation  cultures.  Sci
            22.  Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT,   Rep. 2020;10(1):6272.
               Acevedo-Arozena A, Adeli K, et al. Guidelines for the use      doi: 10.1038/s41598-020-62925-9


            Volume 10 Issue 4 (2024)                       423                                doi: 10.36922/ijb.3010
   426   427   428   429   430   431   432   433   434   435   436