Page 9 - IJB-7-1
P. 9
An, et al.
https://doi.org/10.18063/ijb.v6i1.253 Signatures Using Machine Learning Techniques. J Clin Med,
2. Ng WL, Chan A, Ong YS, et al., 2020, Deep Learning for 9:1670.
Fabrication and Maturation of 3D Bioprinted Tissues and https://doi.org/10.3390/jcm9061670
Organs. Virtual Phys Prototyp, 15:340–58. 15. Rivenson Y, Wang H, Wei Z, et al., 2019, Virtual Histological
3. Meng L, McWilliams B, Jarosinski W, et al., 2020, Machine Staining of Unlabelled Tissue-Autofluorescence Images via
Learning in Additive Manufacturing: A Review. JOM, 72:1–15. Deep Learning. Nat Biomed Eng, 3:466.
4. Goh G, Sing S, Yeong W, 2020, A Review on Machine https://doi.org/10.1038/s41551-019-0362-y
Learning in 3D Printing: Applications, Potential, and 16. Zhang Y, de Haan K, Rivenson Y, et al., 2020, Digital Synthesis
Challenges. Artif Intell Rev, 54:63–94. of Histological Stains Using Micro-Structured and Multiplexed
https://doi.org/10.1007/s10462-020-09876-9 Virtual Staining of Label-free Tissue. Light, 9:1–13.
5. Hamid OA, Eltaher HM, Sottile V, et al., 2020, 3D Bioprinting https://doi.org/10.1038/s41377-020-0315-y
of a Stem Cell-laden, Multi-material Tubular Composite: 17. Rivenson Y, de Haan K, Wallace A, et al., 2020, Emerging
An Approach for Spinal Cord Repair. Mater Sci Eng C, Advances to Transform Histopathology Using Virtual
2020:111707. Staining. BME Front, 2020:9647163.
https://doi.org/10.1016/j.msec.2020.111707 https://doi.org/10.34133/2020/9647163
6. Lee JM, Sing SL, Yeong WY, 2020, Bioprinting of 18. MacArthur BD, Stumpf PS, Oreffo RO, 2020, From
Multimaterials with Computer-aided Design/Computer-aided Mathematical Modeling and Machine Learning to Clinical
Manufacturing. Int J Bioprint, 2020:245. Reality. In: Lanza R, Langer R, Vacanti J, editors. Principles
https://doi.org/10.18063/ijb.v6i1.245 of Tissue Engineering. 5 ed., Ch. 2. Academic Press,
th
7. Geris L, Papantoniou I, 2019, The Third Era of Tissue Cambridge, Massachusetts, pp. 37–51.
Engineering: Reversing the Innovation Drivers. Tissue Eng https://doi.org/10.1016/b978-0-12-818422-6.00001-0
Part A, 25:821–6. 19. What is the Structure of Big Data? 2019. Available
https://doi.org/10.1089/ten.tea.2019.0064 from: https://www.magnimindacademy.com/blog/what-
8. Campos DF, De Laporte L, 2020, Digitally Fabricated and is-the-structure-of-big-data#:~:text=Big%20data%20
Naturally Augmented In Vitro Tissues. Adv Healthc Mater, structures%20can%20be,look%20at%20them%20in%20
2020:2001253. detail. [Last accessed on 2020 Dec 25].
https://doi.org/10.1002/adhm.202001253 20. Yan X, Sedykh A, Wang W, et al., 2020, Construction of a
9. Barnard AS, 2014, In silico veritas. ACS Nano, 8:6520–5. Web-based Nanomaterial Database by Big Data Curation and
10. Ruberu K, Senadeera M, Rana S, et al., Coupling Machine Modeling Friendly Nanostructure Annotations. Nat Commun,
Learning with 3D Bioprinting to Fast Track Optimisation of 11:1–10.
Extrusion Printing. Appl Mater Today, 22:100914. https://doi.org/10.1038/s41467-020-16413-3
https://doi.org/10.1016/j.apmt.2020.100914 21. Bergen KJ, Johnson PA, de Hoop MV, et al., 2019,
11. Zhang Z, Jin Y, Xu C, et al., 2018, Evaluation of Bioink Machine Learning for Data-driven Discovery in Solid Earth
Printability for Bioprinting Applications. Appl Phys Rev, Geoscience. Science, 363:eaau0323.
5:041304. https://doi.org/10.1126/science.aau0323
12. Schwab A, Levato R, D’Este M, et al., 2020, Printability 22. Clauset A, Larremore DB, Sinatra R, 2017, Data-Driven
and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev, Predictions in the Science of Science. Science, 355:477–80.
120:11028–55. https://doi.org/10.1126/science.aal4217
https://doi.org/10.1021/acs.chemrev.0c00084 23. Consortium H, 2019, The Human Body at Cellular
13. Arai F, Stumpf PS, Ikushima YM, et al., 2020, Machine Resolution: The NIH Human Biomolecular Atlas Program.
Learning of Hematopoietic Stem Cell Divisions from Paired Nature, 574:187.
Daughter Cell Expression Profiles Reveals Effects of aging https://doi.org/10.1038/s41586-019-1629-x
on Self-Renewal. Cell Syst, 11:640–52. 24. Hoehme S, Drasdo D, 2010, A Cell-based Simulation Software
https://doi.org/10.1016/j.cels.2020.11.004 for Multi-Cellular Systems. Bioinformatics, 26:2641–2.
14. Cilloni D, Petiti J, Campia V, et al., 2020, Transplantation https://doi.org/10.1093/bioinformatics/btq437
Induces Profound Changes in the Transcriptional Asset 25. Rogers WJ, Meyer CH, Kramer CM, 2006, Technology
of Hematopoietic Stem Cells: Identification of Specific Insight: In Vivo Cell Tracking by Use of MRI. Nat Clin Pract
International Journal of Bioprinting (2021)–Volume 7, Issue 1 5

