Page 9 - IJB-7-1
P. 9

An, et al.
               https://doi.org/10.18063/ijb.v6i1.253               Signatures Using Machine Learning Techniques. J Clin Med,
           2.   Ng WL, Chan A, Ong YS, et al., 2020, Deep Learning for   9:1670.
               Fabrication  and Maturation  of 3D Bioprinted  Tissues and   https://doi.org/10.3390/jcm9061670
               Organs. Virtual Phys Prototyp, 15:340–58.       15.  Rivenson Y, Wang H, Wei Z, et al., 2019, Virtual Histological
           3.   Meng L, McWilliams B, Jarosinski W, et al., 2020, Machine   Staining of Unlabelled Tissue-Autofluorescence Images via
               Learning in Additive Manufacturing: A Review. JOM, 72:1–15.  Deep Learning. Nat Biomed Eng, 3:466.
           4.   Goh G, Sing S,  Yeong  W, 2020,  A Review on Machine      https://doi.org/10.1038/s41551-019-0362-y
               Learning  in  3D Printing:  Applications,  Potential,  and   16.  Zhang Y, de Haan K, Rivenson Y, et al., 2020, Digital Synthesis
               Challenges. Artif Intell Rev, 54:63–94.             of Histological Stains Using Micro-Structured and Multiplexed
               https://doi.org/10.1007/s10462-020-09876-9          Virtual Staining of Label-free Tissue. Light, 9:1–13.
           5.   Hamid OA, Eltaher HM, Sottile V, et al., 2020, 3D Bioprinting      https://doi.org/10.1038/s41377-020-0315-y
               of  a  Stem  Cell-laden,  Multi-material  Tubular  Composite:   17.  Rivenson Y, de Haan K, Wallace A, et al., 2020, Emerging
               An  Approach  for Spinal  Cord Repair.  Mater Sci  Eng C,   Advances  to  Transform  Histopathology  Using  Virtual
               2020:111707.                                        Staining. BME Front, 2020:9647163.
               https://doi.org/10.1016/j.msec.2020.111707          https://doi.org/10.34133/2020/9647163
           6.   Lee JM,  Sing SL,  Yeong  WY, 2020, Bioprinting of   18.  MacArthur BD, Stumpf PS, Oreffo RO,  2020, From
               Multimaterials with Computer-aided Design/Computer-aided   Mathematical  Modeling  and Machine  Learning  to Clinical
               Manufacturing. Int J Bioprint, 2020:245.            Reality. In: Lanza R, Langer R, Vacanti J, editors. Principles
               https://doi.org/10.18063/ijb.v6i1.245               of  Tissue Engineering.  5  ed.,  Ch. 2.  Academic  Press,
                                                                                      th
           7.   Geris L, Papantoniou I, 2019,  The  Third Era of  Tissue   Cambridge, Massachusetts, pp. 37–51.
               Engineering: Reversing the Innovation Drivers. Tissue Eng      https://doi.org/10.1016/b978-0-12-818422-6.00001-0
               Part A, 25:821–6.                               19.  What is the Structure of Big Data?  2019.  Available
               https://doi.org/10.1089/ten.tea.2019.0064           from:   https://www.magnimindacademy.com/blog/what-
           8.   Campos DF, De Laporte L, 2020, Digitally Fabricated and   is-the-structure-of-big-data#:~:text=Big%20data%20
               Naturally Augmented In Vitro Tissues. Adv Healthc Mater,   structures%20can%20be,look%20at%20them%20in%20
               2020:2001253.                                       detail. [Last accessed on 2020 Dec 25].
               https://doi.org/10.1002/adhm.202001253          20.  Yan X, Sedykh A, Wang W, et al., 2020, Construction of a
           9.   Barnard AS, 2014, In silico veritas. ACS Nano, 8:6520–5.  Web-based Nanomaterial Database by Big Data Curation and
           10.  Ruberu K, Senadeera M, Rana S, et al., Coupling Machine   Modeling Friendly Nanostructure Annotations. Nat Commun,
               Learning with 3D Bioprinting to Fast Track Optimisation of   11:1–10.
               Extrusion Printing. Appl Mater Today, 22:100914.      https://doi.org/10.1038/s41467-020-16413-3
               https://doi.org/10.1016/j.apmt.2020.100914      21.  Bergen KJ, Johnson PA, de Hoop MV,  et  al., 2019,
           11.  Zhang  Z,  Jin Y,  Xu C,  et  al.,  2018, Evaluation  of Bioink   Machine Learning for Data-driven Discovery in Solid Earth
               Printability  for Bioprinting  Applications.  Appl  Phys  Rev,   Geoscience. Science, 363:eaau0323.
               5:041304.                                           https://doi.org/10.1126/science.aau0323
           12.  Schwab A, Levato  R, D’Este M,  et al., 2020, Printability   22.  Clauset  A,  Larremore  DB,  Sinatra  R,  2017,  Data-Driven
               and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev,   Predictions in the Science of Science. Science, 355:477–80.
               120:11028–55.                                       https://doi.org/10.1126/science.aal4217
               https://doi.org/10.1021/acs.chemrev.0c00084     23.  Consortium H, 2019,  The Human Body at Cellular
           13.  Arai F, Stumpf PS,  Ikushima  YM,  et al., 2020, Machine   Resolution: The NIH Human Biomolecular Atlas Program.
               Learning of Hematopoietic Stem Cell Divisions from Paired   Nature, 574:187.
               Daughter Cell Expression Profiles Reveals Effects of aging      https://doi.org/10.1038/s41586-019-1629-x
               on Self-Renewal. Cell Syst, 11:640–52.          24.  Hoehme S, Drasdo D, 2010, A Cell-based Simulation Software
               https://doi.org/10.1016/j.cels.2020.11.004          for Multi-Cellular Systems. Bioinformatics, 26:2641–2.
           14.  Cilloni D, Petiti J, Campia V, et al., 2020, Transplantation   https://doi.org/10.1093/bioinformatics/btq437
               Induces  Profound Changes  in  the  Transcriptional  Asset   25.  Rogers  WJ, Meyer CH, Kramer CM, 2006,  Technology
               of  Hematopoietic  Stem  Cells:  Identification  of  Specific   Insight: In Vivo Cell Tracking by Use of MRI. Nat Clin Pract

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 1         5
   4   5   6   7   8   9   10   11   12   13   14