Page 25 - IJB-7-4
P. 25

Zhuang, et al.
               Patterned  Agarose Microwell  Compartments  Harboring      https://doi.org/10.1038/srep13987
               HepG2 Spheroids are Compatible with Genotoxicity Testing.   86.  Wu  M,  Ozcelik  A,  Rufo  J,  et  al.,  2019,  Acoustofluidic
               ACS Biomater Sci Eng, 6:2427–39.                    Separation of Cells and Particles. Microsyst Nanoeng, 5:32.
               https://doi.org/10.1021/acsbiomaterials.9b01951     https://doi.org/10.1038/s41378-019-0064-3
           76.  Mirab  F,  Kang  YJ,  Majd  S,  2019,  Preparation  and   87.  Chen  B,  Wu  Y,  Ao  Z,  et al.,  2019,  High-throughput
               Characterization of Size-controlled Glioma Spheroids Using   Acoustofluidic  Fabrication  of Tumor  Spheroids.  Lab Chip,
               Agarose hydrogel Microwells. PLoS One, 14:e0211078.  19:1755–63.
               https://doi.org/10.1371/journal.pone.0211078        https://doi.org/10.1039/C9LC00135B
           77.  Thomsen AR, Aldrian  C, Bronsert P,  et  al.,  2018, A  Deep   88.  Ota  H,  Miki  N,  2011,  Microfluidic  Experimental  Platform
               Conical Agarose Microwell Array for Adhesion Independent   for Producing Size-controlled Three-dimensional Spheroids.
               Three-dimensional  Cell  Culture  and  Dynamic  Volume   Sens Actuat A Phys, 169:266–73.
               Measurement. Lab Chip, 18:179–89.                   https://doi.org/10.1016/j.sna.2011.03.051
               https://doi.org/10.1039/C7LC00832E              89.  Hong S, Hsu HJ, Kaunas R, et al., 2012, Collagen Microsphere
           78.  Desroches BR, Zhang P, Choi BR, et al., 2012, Functional   Production on a Chip. Lab Chip, 12:3277–80.
               Scaffold-free 3-D Cardiac Microtissues: A Novel Model for      https://doi.org/10.1039/C2LC40558J
               the  Investigation  of  Heart  Cells.  Am J  Physiol  Heart  Circ   90.  Damiati  S,  Kompella  UB,  Damiati  SA,  et al.,  2018,
               Physiol, 302:H2031–42.                              Microfluidic Devices for Drug Delivery Systems and Drug
               https://doi.org/10.1152/ajpheart.00743.2011         Screening. Genes (Basel), 9:103.
           79.  Henslee EA, Dunlop CM, de Mel CM, et al., 2020, DEP-Dots      https://doi.org/10.3390/genes9020103
               for 3D Cell Culture: Low-cost, High-repeatability, Effective   91.  McMillan  KS,  McCluskey  AG,  Sorensen  A,  et  al., 2016,
               3D Cell Culture in Multiple Gel Systems. Sci Rep, 10:14603.  Emulsion  Technologies for Multicellular  Tumour Spheroid
               https://doi.org/10.1038/s41598-020-71265-7          Radiation Assays. Analyst, 141:100–10.
           80.  Albrecht  DR,  Tsang  VL,  Sah  RL,  et al., Photo-  and      https://doi.org/10.1039/c5an01382h
               electropatterning of hydrogel-encapsulated living cell arrays.   92.  Lee JM, Choi JW, Ahrberg CD, et al., 2020, Generation of
               Lab Chip, 5:111–8.                                  Tumor Spheroids Using a Droplet-based Microfluidic Device
               https://doi.org/10.1039/b406953f                    for Photothermal Therapy. Microsyst Nanoeng, 6:52.
           81.  Agarwal  S,  Sebastian  A,  Forrester  LM,  et al., 2012,      https://doi.org/10.1038/s41378-020-0167-x
               Formation of Embryoid Bodies Using Dielectrophoresis.   93.  Lee D, Cha C, 2018, The Combined Effects of Co-Culture
               Biomicrofluidics, 6:24101–11.                       and Substrate Mechanics on 3D Tumor Spheroid Formation
               https://doi.org/10.1063/1.3699969                   within Microgels Prepared via Flow-Focusing Microfluidic
           82.  Jafari J, Han X, Palmer J, et al., 2019, Remote Control in   Fabrication. Pharmaceutics, 10:229.
               Formation of 3D Multicellular Assemblies Using Magnetic      https://doi.org/10.3390/pharmaceutics10040229
               Forces. ACS Biomater Sci Eng, 5:2532–42.        94.  Cui X, Liu Y, Hartanto Y, et al., 2016, Multicellular Spheroids
               https://doi.org/10.1021/acsbiomaterials.9b00297     Formation  and  Recovery  in  Microfluidics-generated
           83.  Urbanczyk  M,  Zbinden  A,  Layland  SL,  et al., Controlled   Thermoresponsive Microgel Droplets. Colloid Interface Sci
               Heterotypic  Pseudo-Islet Assembly of Human  β-Cells and   Commun, 14:4–7.
               Human  Umbilical  Vein  Endothelial  Cells  Using Magnetic      https://doi.org/10.1016/j.colcom.2016.09.001
               Levitation. Tissue Eng Part A, 26:387–99.       95.  Zeng  W,  Xiang  D,  Fu  H,  2019,  Prediction  of  Droplet
               https://doi.org/10.1089/ten.TEA.2019.0158           Production Speed by Measuring the Droplet Spacing
           84.  Lewis NS, El Lewis E, Mullin M, et al., 2017, Magnetically   Fluctuations  in a Flow-Focusing Microdroplet  Generator.
               levitated mesenchymal stem cell spheroids cultured with a   Micromachines, 10:812.
               collagen  gel maintain  phenotype and quiescence.  J  Tissue      https://doi.org/10.3390/mi10120812
               Eng, 8:2041731417704428.                        96.  Kong  T,  Wu  J,  Yeung  KW,  et  al.,  2013,  Microfluidic
               https://doi.org/10.1177/2041731417704428            Fabrication  of Polymeric  Core-shell  Microspheres for
           85.  Tseng H, Gage JA, Shen T, et al., 2015, A Spheroid Toxicity   Controlled Release Applications. Biomicrofluidics, 7:44128.
               Assay Using Magnetic 3D Bioprinting and Real-time Mobile      https://doi.org/10.1063/1.4819274
               Device-based Imaging. Sci Rep, 5:13987.         97.  Tran TM, Lan F, Thompson CS, et al., 2013, From Tubes to

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 4        21
   20   21   22   23   24   25   26   27   28   29   30