Page 25 - IJB-7-4
P. 25
Zhuang, et al.
Patterned Agarose Microwell Compartments Harboring https://doi.org/10.1038/srep13987
HepG2 Spheroids are Compatible with Genotoxicity Testing. 86. Wu M, Ozcelik A, Rufo J, et al., 2019, Acoustofluidic
ACS Biomater Sci Eng, 6:2427–39. Separation of Cells and Particles. Microsyst Nanoeng, 5:32.
https://doi.org/10.1021/acsbiomaterials.9b01951 https://doi.org/10.1038/s41378-019-0064-3
76. Mirab F, Kang YJ, Majd S, 2019, Preparation and 87. Chen B, Wu Y, Ao Z, et al., 2019, High-throughput
Characterization of Size-controlled Glioma Spheroids Using Acoustofluidic Fabrication of Tumor Spheroids. Lab Chip,
Agarose hydrogel Microwells. PLoS One, 14:e0211078. 19:1755–63.
https://doi.org/10.1371/journal.pone.0211078 https://doi.org/10.1039/C9LC00135B
77. Thomsen AR, Aldrian C, Bronsert P, et al., 2018, A Deep 88. Ota H, Miki N, 2011, Microfluidic Experimental Platform
Conical Agarose Microwell Array for Adhesion Independent for Producing Size-controlled Three-dimensional Spheroids.
Three-dimensional Cell Culture and Dynamic Volume Sens Actuat A Phys, 169:266–73.
Measurement. Lab Chip, 18:179–89. https://doi.org/10.1016/j.sna.2011.03.051
https://doi.org/10.1039/C7LC00832E 89. Hong S, Hsu HJ, Kaunas R, et al., 2012, Collagen Microsphere
78. Desroches BR, Zhang P, Choi BR, et al., 2012, Functional Production on a Chip. Lab Chip, 12:3277–80.
Scaffold-free 3-D Cardiac Microtissues: A Novel Model for https://doi.org/10.1039/C2LC40558J
the Investigation of Heart Cells. Am J Physiol Heart Circ 90. Damiati S, Kompella UB, Damiati SA, et al., 2018,
Physiol, 302:H2031–42. Microfluidic Devices for Drug Delivery Systems and Drug
https://doi.org/10.1152/ajpheart.00743.2011 Screening. Genes (Basel), 9:103.
79. Henslee EA, Dunlop CM, de Mel CM, et al., 2020, DEP-Dots https://doi.org/10.3390/genes9020103
for 3D Cell Culture: Low-cost, High-repeatability, Effective 91. McMillan KS, McCluskey AG, Sorensen A, et al., 2016,
3D Cell Culture in Multiple Gel Systems. Sci Rep, 10:14603. Emulsion Technologies for Multicellular Tumour Spheroid
https://doi.org/10.1038/s41598-020-71265-7 Radiation Assays. Analyst, 141:100–10.
80. Albrecht DR, Tsang VL, Sah RL, et al., Photo- and https://doi.org/10.1039/c5an01382h
electropatterning of hydrogel-encapsulated living cell arrays. 92. Lee JM, Choi JW, Ahrberg CD, et al., 2020, Generation of
Lab Chip, 5:111–8. Tumor Spheroids Using a Droplet-based Microfluidic Device
https://doi.org/10.1039/b406953f for Photothermal Therapy. Microsyst Nanoeng, 6:52.
81. Agarwal S, Sebastian A, Forrester LM, et al., 2012, https://doi.org/10.1038/s41378-020-0167-x
Formation of Embryoid Bodies Using Dielectrophoresis. 93. Lee D, Cha C, 2018, The Combined Effects of Co-Culture
Biomicrofluidics, 6:24101–11. and Substrate Mechanics on 3D Tumor Spheroid Formation
https://doi.org/10.1063/1.3699969 within Microgels Prepared via Flow-Focusing Microfluidic
82. Jafari J, Han X, Palmer J, et al., 2019, Remote Control in Fabrication. Pharmaceutics, 10:229.
Formation of 3D Multicellular Assemblies Using Magnetic https://doi.org/10.3390/pharmaceutics10040229
Forces. ACS Biomater Sci Eng, 5:2532–42. 94. Cui X, Liu Y, Hartanto Y, et al., 2016, Multicellular Spheroids
https://doi.org/10.1021/acsbiomaterials.9b00297 Formation and Recovery in Microfluidics-generated
83. Urbanczyk M, Zbinden A, Layland SL, et al., Controlled Thermoresponsive Microgel Droplets. Colloid Interface Sci
Heterotypic Pseudo-Islet Assembly of Human β-Cells and Commun, 14:4–7.
Human Umbilical Vein Endothelial Cells Using Magnetic https://doi.org/10.1016/j.colcom.2016.09.001
Levitation. Tissue Eng Part A, 26:387–99. 95. Zeng W, Xiang D, Fu H, 2019, Prediction of Droplet
https://doi.org/10.1089/ten.TEA.2019.0158 Production Speed by Measuring the Droplet Spacing
84. Lewis NS, El Lewis E, Mullin M, et al., 2017, Magnetically Fluctuations in a Flow-Focusing Microdroplet Generator.
levitated mesenchymal stem cell spheroids cultured with a Micromachines, 10:812.
collagen gel maintain phenotype and quiescence. J Tissue https://doi.org/10.3390/mi10120812
Eng, 8:2041731417704428. 96. Kong T, Wu J, Yeung KW, et al., 2013, Microfluidic
https://doi.org/10.1177/2041731417704428 Fabrication of Polymeric Core-shell Microspheres for
85. Tseng H, Gage JA, Shen T, et al., 2015, A Spheroid Toxicity Controlled Release Applications. Biomicrofluidics, 7:44128.
Assay Using Magnetic 3D Bioprinting and Real-time Mobile https://doi.org/10.1063/1.4819274
Device-based Imaging. Sci Rep, 5:13987. 97. Tran TM, Lan F, Thompson CS, et al., 2013, From Tubes to
International Journal of Bioprinting (2021)–Volume 7, Issue 4 21

