Page 22 - IJB-7-4
P. 22

Using Spheroids to build 3D Bioprinted Tumor Microenvironment
           9.   Stock K, Estrada MF, Vidic S, et al., 2016, Graeser, Capturing   Cancer Microenvironment. ACS Biomater Sci Eng, 2:1710–21.
               Tumor Complexity In Vitro: Comparative Analysis of 2D and      https://doi.org/10.1021/acsbiomaterials.6b00246
               3D Tumor Models for Drug Discovery. Sci Rep., 6:28951.  21.  Albritton JL, Miller JS, 2017, 3D Bioprinting:  Improving
               https://doi.org/10.1038/srep28951                   In Vitro Models of Metastasis with Heterogeneous  Tumor
           10.  Laschke  MW, Menger  MD, 2017,  Life  is  3D: Boosting   Microenvironments. Dis Model Mech, 10:3–14.
               Spheroid Function for Tissue Engineering. Trends Biotechnol,      https://doi.org/10.1242/dmm.025049
               35:133–44.                                      22.  Tang M, Rich JN, Chen S, 2021, Biomaterials  and 3D
               https://doi.org/10.1016/j.tibtech.2016.08.004       Bioprinting Strategies to Model Glioblastoma and the Blood
           11.  Cui X, Hartanto Y, Zhang H, 2017, Advances in Multicellular   Brain Barrier. Adv Mater, 33:2004776.
               Spheroids Formation. J R Soc Interface, 14:20160877.     https://doi.org/10.1002/adma.202004776
               https://doi.org/10.1098/rsif.2016.0877          23.  Wang M, Zhao J, Zhang L,  et al., 2017, Role of  Tumor
           12.  Achilli  TM, Meyer J, Morgan JR, 2012,  Advances in   Microenvironment in Tumorigenesis. J Cancer, 8:761–73.
               the  Formation,  Use and  Understanding  of  Multi-cellular      https://doi.org/10.7150/jca.17648
               Spheroids. Expert Opin Biol Ther, 12:1347–60.   24.  Baghban R, Roshangar L, Jahanban-Esfahlan R, et al., 2020,
               https://doi.org/10.1517/14712598.2012.707181        Tumor Microenvironment Complexity and  Therapeutic
           13.  Nunes AS, Barros AS, Costa EC,  et  al.,  2019,  3D  Tumor   Implications at a Glance. Cell Commun Signal, 18:59.
               Spheroids as In Vitro Models to Mimic In Vivo Human Solid      https://doi.org/10.1186/s12964-020-0530-4
               Tumors Resistance to Therapeutic Drugs. Biotechnol Bioeng,   25.  Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, et al., 2020,
               116:206–26.                                         Concepts  of Extracellular  Matrix  Remodelling  in  Tumour
               https://doi.org/10.1002/bit.26845                   Progression and Metastasis. Nat Commun, 11:5120.
           14.  Edmondson R, Broglie JJ, Adcock AF, et al., 2014, Three-     https://doi.org/10.1038/s41467-020-18794-x
               dimensional Cell Culture Systems and their Applications in   26.  Anderson  NM,  Simon  MC,  2020,  The  Tumor
               Drug Discovery and Cell-based Biosensors. Assay Drug Dev   Microenvironment. Curr Biol, 30:R921–R925.
               Technol., 12:207–18.                                https://doi.org/10.1016/j.cub.2020.06.081
               https://doi.org/10.1089/adt.2014.573            27.  Cuiffo BG, Karnoub AE, 2012, Mesenchymal Stem Cells in
           15.  Zhuang P, Sun AX, An  J,  et al.,  2018,  3D  Neural  Tissue   Tumor  Development:  Emerging Roles  and Concepts.  Cell
               Models: From Spheroids to Bioprinting.  Biomaterials,   Adh Migr, 46:220–30.
               154:113–33.                                         https://doi.org/10.4161/cam.20875
               https://doi.org/10.1016/j.biomaterials.2017.10.002  28.  Ribeiro  AL,  Okamoto  OK,  2015,  Combined  Effects  of
           16.  Zhuang P, An J, Chua CK, et al., 2020, Bioprinting of 3D   Pericytes  in the  Tumor Microenvironment.  Stem Cells  Int,
               In Vitro Skeletal Muscle Models:  A  Review.  Mater Des,   2015:868475.
               193:108794.                                         https://doi.org/10.1155/2015/868475
               https://doi.org/10.1016/j.matdes.2020.108794    29.  Nagl L, Horvath L, Pircher A, et al., 2020, Tumor Endothelial
           17.  Shin YJ, Shafranek RT, Tsui JH, et al., 2021, 3D Bioprinting   Cells  (TECs) as Potential  Immune Directors  of the Tumor
               of Mechanically  Tuned Bioinks Derived from Cardiac   Microenvironment  New Findings and Future Perspectives.
               Decellularized Extracellular Matrix.  Acta Biomater,   Front Cell Dev Biol, 8:766.
               119:75–88.                                          https://doi.org/10.3389/fcell.2020.00766
               https://doi.org/10.1016/j.actbio.2020.11.006    30.  Wullkopf L, West AK, Leijnse N, et al., 2018, Cancer Cells’
           18.  Ma X, Liu J, Zhu W, et al., 2018, 3D Bioprinting of Functional   Ability  to Mechanically  Adjust to Extracellular  Matrix
               Tissue Models for Personalized Drug Screening and In Vitro   Stiffness Correlates with their Invasive Potential. Mol Biol
               Disease Modeling. Adv Drug Deliv Rev, 132:235–51.   Cell, 29:2378–85.
               https://doi.org/10.1016/j.addr.2018.06.011          https://doi.org/10.1091/mbc.E18-05-0319
           19.  Kang  Y,  Datta  P,  Shanmughapriya  S,  et  al., 2020, 3D   31.  Kalli M, Stylianopoulos T, 2018, Defining the Role of Solid
               Bioprinting of Tumor Models for Cancer Research. ACS Appl   Stress and Matrix Stiffness in Cancer Cell Proliferation and
               Bio Mater, 3:5552–73.                               Metastasis. Front Oncol, 8:55.
               https://doi.org/10.1021/acsabm.0c00791              https://doi.org/10.3389/fonc.2018.00055
           20.  Zhang YS, Duchamp M, Oklu R, et al., 2016, Bioprinting the   32.  Bahcecioglu  G, Basara G, Ellis BW,  et al., 2020, Breast

           18                          International Journal of Bioprinting (2021)–Volume 7, Issue 4
   17   18   19   20   21   22   23   24   25   26   27