Page 363 - IJB-9-3
P. 363
International Journal of Bioprinting Decellularized materials for bioprinting of liver constructs
77. Sharma S, Tiwari S, 2020, A review on biomacromolecular 88. Wang Y, Yuan X, Yao B, et al., 2022, Tailoring bioinks of
hydrogel classification and its applications. Int J Biol extrusion-based bioprinting for cutaneous wound healing.
Macromol, 162:737–747. Bioact Mater, 17:178–194.
https://doi.org/10.1016/j.ijbiomac.2020.06.110 https://doi.org/10.1016/j.bioactmat.2022.01.024
78. Ebhodaghe SO, 2020, Hydrogel based biopolymers for 89. Khoeini R, Nosrati H, Akbarzadeh A, et al., 2021, Natural
regenerative medicine applications: A critical review. Intl J and synthetic bioinks for 3D bioprinting. Adv NanoBiomed
Polym Mater Polym Biomater, 71:155–172. Res,1:2000097.
https://doi.org/10.1080/00914037.2020.1809409 https://doi.org/10.1002/anbr.202000097
79. Catoira MC, Fusaro L, Francesco DD, et al., 2019, Overview 90. Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional
of natural hydrogels for regenerative medicine applications. tissue analogues with decellularized extracellular matrix
J Mater Sci Mater Med, 30:115. bioink. Nat Commun, 5:3935.
https://doi.org/10.1007/s10856-019-6318-7 https://doi.org/10.1038/ncomms4935
80. Zieliński PS, Gudet PKR, Rikmanspoel T, et al., 2022, 3D 91. Cui X, Li J, Hartanto Y, et al., 2020, Advances in extrusion
printing of bio-instructive materials: Toward directing the 3D bioprinting: A focus on multicomponent hydrogel-based
cell. Bioact Mater, 19:292–327. bioinks. Adv Healthc Mater, 9:e1901648.
https://doi.org/10.1016/j.bioactmat.2022.04.008 https://doi.org/10.1002/adhm.201901648
81. Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary 92. Sakai S, Nakahata M, 2017, Horseradish peroxidase catalyzed
article: Engineering hydrogels for biofabrication. Adv Mater, hydrogelation for biomedical, biopharmaceutical, and
25:5011–5028. biofabrication applications. Chem Asian J, 12:3098–3109.
https://doi.org/10.1002/adma.201302042 https://doi.org/10.1002/asia.201701364
82. Kim BS, Das S, Jang J, et al., 2020, Decellularized extracellular 93. Gu Y, Forget A, Shastri VP, 2022, Biobridge: An outlook on
matrix-based bioinks for engineering tissue- and organ- translational bioinks for 3D bioprinting. Adv Sci (Weinh),
specific microenvironments. Chem Rev, 120:10608–10661.
9:e2103469.
https://doi.org/10.1021/acs.chemrev.9b00808
https://doi.org/10.1002/advs.202103469
83. Lee SC, Gillispie G, Prim P, et al., 2020, Physical and
chemical factors influencing the printability of hydrogel- 94. Frantz C, Stewart KM, Weaver VM, 2010, The extracellular
based extrusion bioinks. Chem Rev, 120:10834–10886. matrix at a glance. J Cell Sci, 123:4195–4200.
https://doi.org/10.1021/acs.chemrev.0c00015 https://doi.org/10.1242/jcs.023820
84. Zhou K, Sun Y, Yang J, et al., 2022, Hydrogels for 3D 95. Zhang X, Chen X, Hong H, et al., 2022, Decellularized
embedded bioprinting: A focused review on bioinks and extracellular matrix scaffolds: Recent trends and emerging
support baths. J Mater Chem B, 10(12):1897–1907. strategies in tissue engineering. Bioact Mater, 10:15–31.
https://doi.org/10.1039/D1TB02554F https://doi.org/10.1016/j.bioactmat.2021.09.014
85. Arai K, Tsukamoto Y, Yoshida H, et al., 2016, The 96. Nicolas J, Magli S, Rabbachin L, et al., 2020, 3D extracellular
development of cell-adhesive hydrogel for 3D printing. Int matrix mimics: Fundamental concepts and role of materials
J Bioprint, 2(2):153–162. chemistry to influence stem cell fate. Biomacromolecules,
21:1968–1994.
https://dx.doi.org/10.18063/IJB.2016.02.002
https://doi.org/10.1021/acs.biomac.0c00045
86. Soman SS, Govindraj M, Al Hashimi N, et al., 2022,
Bioprinting of human neural tissues using a sustainable 97. Kuraitis D, Giordano C, Ruel M, et al., 2012, Exploiting
marine tunicate derived bioink for translational medicine extracellular matrix-stem cell interactions: A review of
applications. Int J Bioprint, 8(4):604. natural materials for therapeutic muscle regeneration.
Biomaterials, 33(2):428–443.
https://doi.org/10.18063/ijb.v8i4.604
https://doi.org/10.1016/j.biomaterials.2011.09.078
87. Wang M, Li W, Hao J, et al., 2022, Molecularly cleavable
bioinks facilitate high-performance digital light processing- 98. Jain P, Rauer SB, Möller M, et al., 2022, Mimicking the natural
based bioprinting of functional volumetric soft tissues. Nat basement membrane for advanced tissue engineering.
Commun, 13:3317. Biomacromolecules, 23:3081–3103.
https://doi.org/10.1038/s41467-022-31002-2 https://doi.org/10.1021/acs.biomac.2c00402
Volume 9 Issue 3 (2023) 355 https://doi.org/10.18063/ijb.714

