Page 363 - IJB-9-3
P. 363

International Journal of Bioprinting                     Decellularized  materials for bioprinting of liver constructs



            77.  Sharma S, Tiwari S, 2020, A review on biomacromolecular   88.  Wang Y, Yuan X, Yao B, et al., 2022, Tailoring bioinks of
               hydrogel classification  and  its applications.  Int J Biol   extrusion-based bioprinting for cutaneous wound healing.
               Macromol, 162:737–747.                             Bioact Mater, 17:178–194.
               https://doi.org/10.1016/j.ijbiomac.2020.06.110     https://doi.org/10.1016/j.bioactmat.2022.01.024
            78.  Ebhodaghe SO, 2020, Hydrogel based biopolymers for   89.  Khoeini R, Nosrati H, Akbarzadeh A, et al., 2021, Natural
               regenerative medicine applications: A critical review. Intl J   and synthetic bioinks for 3D bioprinting. Adv NanoBiomed
               Polym Mater Polym Biomater, 71:155–172.            Res,1:2000097.
               https://doi.org/10.1080/00914037.2020.1809409      https://doi.org/10.1002/anbr.202000097

            79.  Catoira MC, Fusaro L, Francesco DD, et al., 2019, Overview   90.  Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional
               of natural hydrogels for regenerative medicine applications.   tissue analogues with decellularized extracellular matrix
               J Mater Sci Mater Med, 30:115.                     bioink. Nat Commun, 5:3935.
               https://doi.org/10.1007/s10856-019-6318-7          https://doi.org/10.1038/ncomms4935
            80.  Zieliński PS, Gudet PKR, Rikmanspoel T, et al., 2022, 3D   91.  Cui X, Li J, Hartanto Y, et al., 2020, Advances in extrusion
               printing of bio-instructive materials: Toward directing the   3D bioprinting: A focus on multicomponent hydrogel-based
               cell. Bioact Mater, 19:292–327.                    bioinks. Adv Healthc Mater, 9:e1901648.
               https://doi.org/10.1016/j.bioactmat.2022.04.008    https://doi.org/10.1002/adhm.201901648

            81.  Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary   92.  Sakai S, Nakahata M, 2017, Horseradish peroxidase catalyzed
               article: Engineering hydrogels for biofabrication. Adv Mater,   hydrogelation for biomedical, biopharmaceutical, and
               25:5011–5028.                                      biofabrication applications. Chem Asian J, 12:3098–3109.
               https://doi.org/10.1002/adma.201302042             https://doi.org/10.1002/asia.201701364
            82.  Kim BS, Das S, Jang J, et al., 2020, Decellularized extracellular   93.  Gu Y, Forget A, Shastri VP, 2022, Biobridge: An outlook on
               matrix-based bioinks for engineering tissue- and organ-  translational bioinks for 3D bioprinting. Adv Sci (Weinh),
               specific microenvironments. Chem Rev, 120:10608–10661.
                                                                  9:e2103469.
               https://doi.org/10.1021/acs.chemrev.9b00808
                                                                  https://doi.org/10.1002/advs.202103469
            83.  Lee SC, Gillispie G, Prim P,  et al., 2020, Physical and
               chemical factors influencing the printability of hydrogel-  94.  Frantz C, Stewart KM, Weaver VM, 2010, The extracellular
               based extrusion bioinks. Chem Rev, 120:10834–10886.  matrix at a glance. J Cell Sci, 123:4195–4200.
               https://doi.org/10.1021/acs.chemrev.0c00015        https://doi.org/10.1242/jcs.023820
            84.  Zhou K, Sun Y, Yang J,  et al., 2022, Hydrogels for 3D   95.  Zhang X, Chen X, Hong H,  et  al., 2022, Decellularized
               embedded bioprinting: A focused review on bioinks and   extracellular matrix scaffolds: Recent trends and emerging
               support baths. J Mater Chem B, 10(12):1897–1907.   strategies in tissue engineering. Bioact Mater, 10:15–31.
               https://doi.org/10.1039/D1TB02554F                 https://doi.org/10.1016/j.bioactmat.2021.09.014

            85.  Arai K, Tsukamoto Y, Yoshida H,  et al., 2016, The   96.  Nicolas J, Magli S, Rabbachin L, et al., 2020, 3D extracellular
               development of cell-adhesive hydrogel for 3D printing. Int   matrix mimics: Fundamental concepts and role of materials
               J Bioprint, 2(2):153–162.                          chemistry to influence  stem  cell  fate.  Biomacromolecules,
                                                                  21:1968–1994.
               https://dx.doi.org/10.18063/IJB.2016.02.002
                                                                  https://doi.org/10.1021/acs.biomac.0c00045
            86.  Soman SS, Govindraj M, Al Hashimi N,  et al., 2022,
               Bioprinting of human neural tissues using a sustainable   97.  Kuraitis D, Giordano C, Ruel M,  et al., 2012, Exploiting
               marine  tunicate derived  bioink  for translational  medicine   extracellular matrix-stem cell interactions: A review of
               applications. Int J Bioprint, 8(4):604.            natural materials for therapeutic muscle regeneration.
                                                                  Biomaterials, 33(2):428–443.
               https://doi.org/10.18063/ijb.v8i4.604
                                                                  https://doi.org/10.1016/j.biomaterials.2011.09.078
            87.  Wang M,  Li W,  Hao J,  et al., 2022,  Molecularly cleavable
               bioinks facilitate high-performance digital light processing-  98.  Jain P, Rauer SB, Möller M, et al., 2022, Mimicking the natural
               based bioprinting of functional volumetric soft tissues. Nat   basement membrane for advanced tissue engineering.
               Commun, 13:3317.                                   Biomacromolecules, 23:3081–3103.
               https://doi.org/10.1038/s41467-022-31002-2         https://doi.org/10.1021/acs.biomac.2c00402


            Volume 9 Issue 3 (2023)                        355                          https://doi.org/10.18063/ijb.714
   358   359   360   361   362   363   364   365   366   367   368