Page 82 - IJB-9-4
P. 82

International Journal of Bioprinting                       3D bioprinting of ultrashort peptides for chondrogenesis



            38.  Waters ML, Aromatic interactions in peptides: Impact on   47.  Idaszek  J,  Costantini  M,  Karlsen  TA,  et  al.,  2019,  3D
               structure and function. Pept Sci, 76(5):435–445.   bioprinting  of  hydrogel  constructs  with  cell  and  material
                                                                  gradients for  the  regeneration  of  full-thickness chondral
            39.  Greenfield MA, Hoffman JR, de la Cruz MO, et al., 2010,   defect using a microfluidic printing head.  Biofabrication,
               Tunable mechanics of peptide nanofiber gels.  Langmuir,   11(4):044101.
               26(5):3641–3647.
                                                               48.  Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting
            40.  Loo Y, Lakshmanan A, Ni M, et al., 2015, Peptide bioink:   of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro
               Self-assembling nanofibrous scaffolds for three-dimensional   neocartilage formation. Biofabrication, 8(3):035002.
               organotypic cultures. Nano Lett, 15(10):6919–6925.
                                                               49.  Roughley PJ, Mort JS, 2014, The role of aggrecan in normal
            41.  Wu L, Magaz A, Wang T,  et al., 2018, Stiffness memory   and osteoarthritic cartilage. J Exp Orthop, 1(1):1–11.
               of indirectly 3D-printed elastomer nanohybrid regulates
               chondrogenesis and osteogenesis of human mesenchymal   50.  Hollenstein J, Terrier A, Cory E,  et al., 2015, Mechanical
               stem cells. Biomaterials, 186:64–79.               evaluation of a tissue-engineered zone of calcification in a
                                                                  bone–hydrogel osteochondral construct.  Comput Methods
            42.  El-Rashidy AA, El Moshy S, Radwan IA, et al., 2021, Effect   Biomech Biomed Eng, 18(3):332–337.
               of polymeric matrix stiffness on osteogenic differentiation
               of mesenchymal stem/progenitor cells: Concise review.   51.  Olivares-Navarrete R,  Lee EM,  Smith  K,  et al.,  Substrate
               Polymers, 13(17):2950.                             stiffness  controls  osteoblastic  and  chondrocytic
                                                                  differentiation of mesenchymal stem cells without exogenous
            43.  Fahy N, Alini M, Stoddart MJ, 2018, Mechanical stimulation   stimuli. PLoS One, 12(1):e0170312.
               of mesenchymal stem cells: Implications for cartilage tissue
               engineering. J Orthop Res, 36(1):52–63.         52.  Zhou Y, Qiu J, Wan L, et al., 2022, The effect of matrix stiffness
                                                                  on the chondrogenic differentiation of mesenchymal stem
            44.  Hao J, Zhang Y, Jing D,  et al., 2015, Mechanobiology of   cells. J Mol Histol, 53(5):805–816.
               mesenchymal stem cells: Perspective into mechanical
               induction of MSC fate. Acta Biomater, 20:1–9.   53.  Mohammed M, Lai T-S, Lin H-C, 2021, Substrate stiffness
                                                                  and sequence dependent bioactive peptide hydrogels
            45.  Almalki  SG, Agrawal  DK,  2016,  Key  transcription   influence the chondrogenic differentiation of human
               factors in the differentiation of mesenchymal stem cells.   mesenchymal stem cells. J Mater Chem B, 9(6):1676–1685.
               Differentiation, 92(1–2):41–51.
                                                               54.  Park JS, Chu JS, Tsou AD, et al., 2011, The effect of matrix
            46.  Liu Y, Shah KM, Luo J, 2021, Strategies for articular cartilage   stiffness on the differentiation of mesenchymal stem cells in
               repair and regeneration. Front Bioeng Biotechnol, 9:1328.  response to TGF-β. Biomaterials, 32(16):3921–3930.






































            Volume 9 Issue 4 (2023)                         74                         https://doi.org/10.18063/ijb.719
   77   78   79   80   81   82   83   84   85   86   87