Page 382 - v11i4
P. 382
International Journal of Bioprinting Sr-doped printed scaffolds for bone repair
biocompatibility, degradability, and osteogenesis for cranial 58. Devi VK A, Ray S, Arora U, et al. Dual drug delivery
bone repair. J Funct Biomater. 2022;13(4):231. platforms for bone tissue engineering. Front Bioeng
doi: 10.3390/jfb13040231 Biotechnol. 2022;10:969843.
doi: 10.3389/fbioe.2022.969843
48. Wu Y, Liu J, Kang L, et al. An overview of 3D printed metal
implants in orthopedic applications: present and future 59. S S, R G AP, Bajaj G, et al. A review on the recent applications
perspectives. Heliyon. 2023;9(7):e17718. of synthetic biopolymers in 3D printing for biomedical
doi: 10.1016/j.heliyon.2023.e17718 applications. J Mater Sci Mater Med. 2023;34(12):62.
49. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional doi: 10.1007/s10856-023-06765-9
(3D) printed scaffold and material selection for bone repair. 60. Wang S, Gu R, Wang F, et al. 3D-Printed PCL/Zn scaffolds
Acta Biomater. 2019;84:16-33. for bone regeneration with a dose-dependent effect on
doi: 10.1016/j.actbio.2018.11.039 osteogenesis and osteoclastogenesis. Mater Today Bio.
50. Toosi S, Javid-Naderi MJ, Tamayol A, et al. Additively 2022;13:100202.
manufactured porous scaffolds by design for treatment of doi: 10.1016/j.mtbio.2021.100202
bone defects. Front Bioeng Biotechnol. 2023;11:1252636. 61. Murugan S, Parcha SR. Fabrication techniques involved in
doi: 10.3389/fbioe.2023.1252636 developing the composite scaffolds PCL/HA nanoparticles
51. Bouakaz I, Drouet C, Grossin D, et al. Hydroxyapatite for bone tissue engineering applications. J Mater Sci Mater
3D-printed scaffolds with gyroid-triply periodic minimal Med. 2021;32(8):93.
surface porous structure: fabrication and an in vivo pilot doi: 10.1007/s10856-021-06564-0
study in sheep. Acta Biomater. 2023;170:580-595. 62. Labbaf S, Tsigkou O, Müller KH, et al. Spherical bioactive
doi: 10.1016/j.actbio.2023.08.041 glass particles and their interaction with human
52. Du J, Zhou Y, Bao X, et al. Surface polydopamine mesenchymal stem cells in vitro. Biomaterials. 2011;32(4):
modification of bone defect repair materials: characteristics 1010-1018.
and applications. Front Bioeng Biotechnol. 2022;10:974533. doi: 10.1016/j.biomaterials.2010.08.082
doi: 10.3389/fbioe.2022.974533 63. Ma YX, Jiao K, Wan QQ, et al. Silicified collagen scaffold
53. Ghalia MA, Alhanish A. Mechanical and biodegradability induces semaphorin 3A secretion by sensory nerves to
of porous PCL/PEG copolymer-reinforced cellulose improve in-situ bone regeneration. Bioact Mater. 2022;9:
nanofibers for soft tissue engineering applications. Med Eng 475-490.
Phys. 2023;120:104055. doi: 10.1016/j.bioactmat.2021.07.016
doi: 10.1016/j.medengphy.2023.104055 64. Qiu P, Li M, Chen K, et al. Periosteal matrix-derived
54. Xiao L, Li Y, Geng R, et al. Polymer composite microspheres hydrogel promotes bone repair through an early immune
loading (177)Lu radionuclide for interventional regulation coupled with enhanced angio- and osteogenesis.
radioembolization therapy and real-time SPECT imaging of Biomaterials. 2020;227:119552.
hepatic cancer. Biomater Res. 2023;27(1):110. doi: 10.1016/j.biomaterials.2019.119552
doi: 10.1186/s40824-023-00455-x 65. Zhang Y, Yu W, Ba Z, et al. 3D-printed scaffolds of
55. Mahnavi A, Shahriari-Khalaji M, Hosseinpour B, et al. mesoporous bioglass/gliadin/polycaprolactone ternary
Evaluation of cell adhesion and osteoconductivity in composite for enhancement of compressive strength,
bone substitutes modified by polydopamine. Front Bioeng degradability, cell responses and new bone tissue ingrowth.
Biotechnol. 2022;10:1057699. Int J Nanomed. 2018;13:5433-5447.
doi: 10.3389/fbioe.2022.1057699 doi: 10.2147/ijn.S164869
56. Wang H, Yuan C, Lin K, et al. Modifying a 3D-printed 66. Qiu H, Xiong H, Zheng J, et al. Sr-incorporated bioactive
Ti6Al4V implant with polydopamine coating to improve glass remodels the immunological microenvironment by
BMSCs growth, osteogenic differentiation, and in enhancing the mitochondrial function of macrophage via
situ osseointegration in vivo. Front Bioeng Biotechnol. the PI3K/AKT/mTOR signaling pathway. ACS Biomater Sci
2021;9:761911. Eng. 2024;10(6):3923-3934.
doi: 10.3389/fbioe.2021.761911 doi: 10.1021/acsbiomaterials.4c00228
57. Zhao ZH, Ma XL, Ma JX, et al. Sustained release of 67. Ajita J, Saravanan S, Selvamurugan N. Effect of size of
naringin from silk-fibroin-nanohydroxyapatite scaffold for bioactive glass nanoparticles on mesenchymal stem cell
the enhancement of bone regeneration. Mater Today Bio. proliferation for dental and orthopedic applications. Mater
2022;13:100206. Sci Eng C Mater Biol Appl. 2015;53:142-149.
doi: 10.1016/j.mtbio.2022.100206 doi: 10.1016/j.msec.2015.04.041
Volume 11 Issue 4 (2025) 374 doi: 10.36922/IJB025210211