Page 382 - v11i4
P. 382

International Journal of Bioprinting                                Sr-doped printed scaffolds for bone repair




               biocompatibility, degradability, and osteogenesis for cranial   58.  Devi VK A, Ray S, Arora U, et al. Dual drug delivery
               bone repair. J Funct Biomater. 2022;13(4):231.     platforms  for  bone  tissue  engineering.  Front Bioeng
               doi: 10.3390/jfb13040231                           Biotechnol. 2022;10:969843.
                                                                  doi: 10.3389/fbioe.2022.969843
            48.  Wu Y, Liu J, Kang L, et al. An overview of 3D printed metal
               implants in orthopedic applications: present and future   59.  S S, R G AP, Bajaj G, et al. A review on the recent applications
               perspectives. Heliyon. 2023;9(7):e17718.           of synthetic biopolymers in 3D printing for biomedical
               doi: 10.1016/j.heliyon.2023.e17718                 applications. J Mater Sci Mater Med. 2023;34(12):62.
            49.  Zhang  L,  Yang  G,  Johnson  BN,  Jia  X.  Three-dimensional      doi: 10.1007/s10856-023-06765-9
               (3D) printed scaffold and material selection for bone repair.   60.  Wang S, Gu R, Wang F, et al. 3D-Printed PCL/Zn scaffolds
               Acta Biomater. 2019;84:16-33.                      for bone regeneration with a dose-dependent effect on
               doi: 10.1016/j.actbio.2018.11.039                  osteogenesis and osteoclastogenesis.  Mater Today Bio.
            50.  Toosi S, Javid-Naderi MJ, Tamayol A, et al. Additively   2022;13:100202.
               manufactured porous scaffolds by design for treatment of      doi: 10.1016/j.mtbio.2021.100202
               bone defects. Front Bioeng Biotechnol. 2023;11:1252636.   61.  Murugan S, Parcha SR. Fabrication techniques involved in
               doi: 10.3389/fbioe.2023.1252636                    developing the composite scaffolds PCL/HA nanoparticles
            51.  Bouakaz I, Drouet C, Grossin D, et al. Hydroxyapatite   for bone tissue engineering applications. J Mater Sci Mater
               3D-printed scaffolds with gyroid-triply periodic minimal   Med. 2021;32(8):93.
               surface porous structure: fabrication and an in vivo pilot      doi: 10.1007/s10856-021-06564-0
               study in sheep. Acta Biomater. 2023;170:580-595.   62.  Labbaf S, Tsigkou O, Müller KH, et al. Spherical bioactive
               doi: 10.1016/j.actbio.2023.08.041                  glass particles and their interaction with human
            52.  Du J, Zhou Y, Bao X, et al.  Surface polydopamine   mesenchymal stem cells in vitro. Biomaterials. 2011;32(4):
               modification of bone defect repair materials: characteristics   1010-1018.
               and applications. Front Bioeng Biotechnol. 2022;10:974533.      doi: 10.1016/j.biomaterials.2010.08.082
               doi: 10.3389/fbioe.2022.974533                  63.  Ma YX, Jiao K, Wan QQ, et al. Silicified collagen scaffold
            53.  Ghalia MA, Alhanish A. Mechanical and biodegradability   induces semaphorin 3A secretion by sensory nerves to
               of porous PCL/PEG copolymer-reinforced cellulose   improve in-situ bone regeneration.  Bioact Mater. 2022;9:
               nanofibers for soft tissue engineering applications. Med Eng   475-490.
               Phys. 2023;120:104055.                             doi: 10.1016/j.bioactmat.2021.07.016
               doi: 10.1016/j.medengphy.2023.104055            64.  Qiu P, Li M, Chen K, et al. Periosteal matrix-derived
            54.  Xiao L, Li Y, Geng R, et al. Polymer composite microspheres   hydrogel  promotes  bone  repair  through  an  early  immune
               loading  (177)Lu  radionuclide  for  interventional  regulation coupled with enhanced angio- and osteogenesis.
               radioembolization therapy and real-time SPECT imaging of   Biomaterials. 2020;227:119552.
               hepatic cancer. Biomater Res. 2023;27(1):110.      doi: 10.1016/j.biomaterials.2019.119552
               doi: 10.1186/s40824-023-00455-x                 65.  Zhang Y, Yu W, Ba Z, et al. 3D-printed scaffolds of
            55.  Mahnavi A, Shahriari-Khalaji M, Hosseinpour B, et al.   mesoporous  bioglass/gliadin/polycaprolactone  ternary
               Evaluation of cell adhesion and osteoconductivity in   composite for enhancement of compressive strength,
               bone substitutes modified by polydopamine. Front Bioeng   degradability, cell responses and new bone tissue ingrowth.
               Biotechnol. 2022;10:1057699.                       Int J Nanomed. 2018;13:5433-5447.
               doi: 10.3389/fbioe.2022.1057699                    doi: 10.2147/ijn.S164869
            56.  Wang H, Yuan C, Lin K, et al. Modifying a 3D-printed   66.  Qiu H, Xiong H, Zheng J, et al. Sr-incorporated bioactive
               Ti6Al4V implant with polydopamine coating to improve   glass remodels the immunological microenvironment by
               BMSCs growth, osteogenic differentiation, and in   enhancing the mitochondrial function of macrophage via
               situ osseointegration in vivo.  Front Bioeng Biotechnol.   the PI3K/AKT/mTOR signaling pathway. ACS Biomater Sci
               2021;9:761911.                                     Eng. 2024;10(6):3923-3934.
               doi: 10.3389/fbioe.2021.761911                     doi: 10.1021/acsbiomaterials.4c00228
            57.  Zhao ZH, Ma XL, Ma JX, et al. Sustained release of   67.  Ajita J, Saravanan S, Selvamurugan N. Effect of size of
               naringin from silk-fibroin-nanohydroxyapatite scaffold for   bioactive glass nanoparticles on mesenchymal stem cell
               the enhancement of bone regeneration.  Mater Today Bio.   proliferation for dental and orthopedic applications. Mater
               2022;13:100206.                                    Sci Eng C Mater Biol Appl. 2015;53:142-149.
               doi: 10.1016/j.mtbio.2022.100206                   doi: 10.1016/j.msec.2015.04.041






            Volume 11 Issue 4 (2025)                       374                            doi: 10.36922/IJB025210211
   377   378   379   380   381   382   383   384   385   386   387