Page 20 - ITPS-6-2
P. 20

INNOSC Theranostics and
            Pharmacological Sciences                                                     Theranostics in neurosurgery



               Effectiveness of rehabilitation interventions to improve gait   91.  Moura RC, Santos CA, Grecco LA, et al., 2016, Transcranial
               speed in children with cerebral palsy: Systematic review and   direct current stimulation combined with  upper  limb
               meta-analysis. Phys Ther, 96: 1938–1954.           functional training in children with spastic, hemiparetic
                                                                  cerebral palsy: Study protocol for a randomized controlled
               https://doi.org/10.2522/ptj.20150401
                                                                  trial. Trials, 17: 405.
            84.  Gillick B, Rich T, Nemanich S,  et  al., 2018, Transcranial      https://doi.org/10.1186/s13063-016-1534-7
               direct current stimulation and constraint-induced therapy
               in cerebral palsy: A randomized, blinded, sham-controlled   92.  Perides S, Lin JP, Lee G, et al., 2020, Deep brain stimulation
               clinical trial. Eur J Paediatr Neurol, 22: 358–368.   reduces pain in children with dystonia, including in dyskinetic
                                                                  cerebral palsy. Dev Med Child Neurol, 62: 917–925.
               https://doi.org/10.1016/j.ejpn.2018.02.001
                                                                  https://doi.org/10.1111/dmcn.14555
            85.  Ertzgaard P, Alwin J, Sörbo A, et al., 2018, Evaluation of a self-
               administered transcutaneous electrical stimulation concept for   93.  Lin S, Zhang C, Li H, et al., 2020, High frequency deep brain
               the treatment of spasticity: A randomized placebo-controlled   stimulation of superior cerebellar peduncles in a patient with
               trial. Eur J Phys Rehabil Med, 54: 507–517.        cerebral palsy. Tremor Other Hyperkinet Mov (N Y), 10: 38.
               https://doi.org/10.23736/S1973-9087.17.04791-8     https://doi.org/10.5334/tohm.551
            86.  Saleem GT, Crasta JE, Slomine BS, et al., 2019, Transcranial   94.  Diniz JM, Cury RG, Iglesio RF,  et al., 2021, Dentate
               direct current stimulation in pediatric motor disorders:   nucleus deep brain stimulation: Technical note of a novel
               A  systematic review and meta-analysis.  Arch Phys Med   methodology assisted by tractography. Surg Neurol Int,
               Rehabil, 100: 724–738.                             12: 400.
                                                                  https://doi.org/10.25259/sni_338_2021
               https://doi.org/10.1016/j.apmr.2018.10.011
                                                               95.  Akakin A, Peris-Celda M, Kilic T, et al., 2014, The dentate
            87.  Grecco LA, Duarte ND, de Mendonça ME,  et al., 2013,   nucleus and its projection system in the human cerebellum:
               Effect of transcranial direct current stimulation combined   The dentate nucleus microsurgical anatomical study.
               with gait and mobility training on functionality in children   Neurosurgery, 74: 401–424; discussion 424–425.
               with cerebral palsy: Study protocol for a double-blind
               randomized controlled clinical trial. BMC Pediatr, 13: 168.      https://doi.org/10.1227/NEU.0000000000000293
               https://doi.org/10.1186/1471-2431-13-168        96.  Choi S, Shin YB, Kim SY, et al., 2018, A novel sensor-based
                                                                  assessment of lower limb spasticity in children with cerebral
            88.  Chen XL, Yu LP, Zhu Y,  et  al., 2021, Combined effect of   palsy. J Neuroeng Rehabil, 15: 45.
               hydrotherapy and transcranial direct-current stimulation on
               children with cerebral palsy: A protocol for a randomized      https://doi.org/10.1186/s12984-018-0388-5
               controlled trial. Medicine (Baltimore), 100: e27962.   97.  Stanslaski SR, Case MA, Giftakis JE, et al., 2022, Long term
               https://doi.org/10.1097/md.0000000000027962        performance of a bi-directional neural interface for deep brain
                                                                  stimulation and recording. Front Hum Neurosci, 16: 916627.
            89.  Inguaggiato E, Bolognini N, Fiori S, et al., 2019, Transcranial
               direct current stimulation (tDCS) in unilateral cerebral palsy:      https://doi.org/10.3389/fnhum.2022.916627
               A pilot study of motor effect. Neural Plast, 2019: 2184398.   98.  Starr PA, 2018, Totally implantable bidirectional
               https://doi.org/10.1155/2019/2184398               neural prostheses: A  flexible platform for innovation in
                                                                  neuromodulation. Front Neurosci, 12: 619.
            90.  Rich TL, Nemanich S, Chen M,  et al., 2018, Transcranial
               direct current stimulation (tDCS) paired with occupation-     https://doi.org/10.3389/fnins.2018.00619
               centered bimanual training in children with unilateral   99.  Lopes EM, Rego R, Rito M,  et al., 2022, Estimation of
               cerebral palsy: A  preliminary study.  Neural Plast,   ANT-DBS electrodes on target positioning based on a new
               2018: 9610812.                                     percept™ PC LFP signal analysis. Sensors (Basel), 22: 6601.
               https://doi.org/10.1155/2018/9610812               https://doi.org/10.3390/s22176601















            Volume 6 Issue 2 (2023)                         14                        https://doi.org/10.36922/itps.417
   15   16   17   18   19   20   21   22   23   24   25