Page 134 - ITPS-7-2
P. 134

INNOSC Theranostics and
            Pharmacological Sciences                                          PI3K-α inhibitors for cancer immunotherapy



               outcomes. J Oncol. 2012;2012:192464.               Michaelis  M, Wass MN. 3DLigandSite: Structure-based
                                                                  prediction of protein-ligand binding sites. Nucleic Acids Res.
               doi: 10.1155/2012/192464
                                                                  2022;50(W1):W13-W20.
            31.  Mirzaei S, Ghodsi R, Hadizadeh F, Sahebkar A. 3D-QSAR-
               Based pharmacophore modeling, virtual screening, and      doi: 10.1093/nar/gkac250
               molecular docking studies for identification of tubulin   42.  Mukhopadhyay A, Borkakoti N, Pravda L. Finding
               inhibitors with potential anticancer activity. Biomed Res Int.   enzyme cofactors in Protein Data Bank.  Bioinformatics.
               2021;2021:6480804.                                 2019;35(18):3510-3511.
               doi: 10.1155/2021/6480804                          doi: 10.1093/bioinformatics/btz115
            32.  Wasukan N, Kuno M, Maniratanachote R. Molecular docking   43.  Torrance JW, MacArthur MW, Thornton JM. Evolution of
               as a promising predictive model for silver nanoparticle-  binding sites for zinc and calcium ions playing structural
               mediated inhibition of cytochrome P450 enzymes. J Chem   roles. Proteins. 2008;71(2):813-830.
               Inf Model. 2019;59:5126-5134.
                                                                  doi: 10.1002/prot.21741
               doi: 10.1021/acs.jcim.9b00572
                                                               44.  Zhao J, Cao Y, Zhang L. Exploring the computational
            33.  Dibia KT, Igbokwe PK, Ezemagu GI, Asadu CO. Exploration   methods for protein-ligand binding site prediction. Comput
               of the quantitative structure-activity relationships for   Struct Biotechnol J. 2020;18:417-426.
               predicting cyclooxygenase-2 inhibition bioactivity by      doi: 10.1016/j.csbj.2020.02.008
               machine learning approaches. Results Chem. 2022;4:100272.
                                                               45.  Roche DB, Brackenridge DA, McGuffin LJ. Proteins and
               doi: 10.1016/j.rechem.2021.100272
                                                                  their interacting partners: An introduction to protein-
            34.  Chen X, Liu M, Gilson MK. BindingDB: A web-accessible   ligand binding site prediction methods.  Int J Mol Sci.
               molecular recognition database.  Comb Chem High    2015;16:29829-29842.
               Throughput Screen. 2001;4(8):719-725.
                                                                  doi: 10.3390/ijms161226202
               doi: 10.2174/1386207013330670
                                                               46.  Kudo G, Hirao T, Yoshino R, Shigeta Y, Hirokawa T. Pocket
            35.  Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB:   to concavity: A  tool for the refinement of protein-ligand
               A  web-accessible database of experimentally determined   binding  site  shape  from  Alpha  spheres.  Bioinformatics.
               protein-ligand binding  affinities.  Nucleic Acids Res.   2023;39(4):btad212.
               2007;35:D198-D201.
                                                                  doi: 10.1093/bioinformatics/btad212
               doi: 10.1093/nar/gkl999
                                                               47.  Heifetz A, Katchalski-Katzir E, Eisenstein M. Electrostatics
            36.  Bateman A, Martin MJ, Orchard S,  et  al. UniProt: The   in protein-protein docking. Protein Sci. 2009;11(3):571-587.
               universal protein knowledgebase in 2023. Nucleic Acids Res.      doi: 10.1110/ps.26002
               2023;51(D1):D523-D531.
                                                               48.  Palma PN, Krippahl L, Wampler JE, Moura JJ. Bigger: A new
               doi: 10.1093/nar/gkac1052
                                                                  (soft) docking algorithm for predicting protein interactions.
            37.  Fan C, Chen M, Wang X, Wang J, Huang B. A review on   Proteins. 2000;39(4):372-384.
               data preprocessing techniques toward efficient and reliable      doi:  10.1002/(SICI)1097-0134(20000601)39:4<372:AID-
               knowledge discovery from building operational data. Front   PROT100>3.0.CO;2-Q
               Energy Res. 2021;9:652801.
                                                               49.  Adiyaman R, McGuffin LJ. Methods for the refinement of
               doi: 10.3389/fenrg.2021.652801
                                                                  protein structure 3D models. Int J Mol Sci. 2019;20:2301.
            38.  Alasadi SA, Bhaya WS. Review of data preprocessing techniques      doi: 10.3390/ijms20092301
               in data mining. J Eng Appl Sci. 2017;12(16):4102-4107.
                                                               50.  Madhavi  G,  Adzhigirey  M,  Day  T,  Annabhimoju  R,
               doi: 10.3923/jeasci.2017.4102.4107
                                                                  Sherman  W.  Protein  and ligand preparation:  Parameters,
            39.  Kanwar G, Kumar A, Mahajan A. Open source software   protocols, and influence on virtual screening enrichments.
               tools for computer aided drug design. Int J Res Pharm Sci.   J Comput Aided Mol Des. 2013;27(3):221-234.
               2018;9(1):86-95.
                                                                  doi: 10.1007/s10822-013-9644-8
               doi: 10.26452/ijrps.v9i1.1191
                                                               51.  Lerm JA, Meyners C, Christmann A, et al. Binding pocket
            40.  Lindahl ER. Molecular dynamics simulations. Methods Mol   stabilization by high-throughput screening of yeast display
               Biol. 2008;443:3-23.                               libraries. Front Mol Biosci. 2022;9:1023131.
               doi: 10.1007/978-1-59745-177-2_1                   doi: 10.3389/fmolb.2022.1023131
            41.  McGreig JE, Uri H, Antczak M, Sternberg MJE,   52.  Müller I. Guidelines for the successful generation of protein-


            Volume 7 Issue 2 (2024)                         24                               doi: 10.36922/itps.2340
   129   130   131   132   133   134   135   136   137   138   139