Page 94 - ITPS-7-3
P. 94

INNOSC Theranostics and
            Pharmacological Sciences                                                      Medical imaging technology



               doi: 10.1007/s11042-023-17326-1                    doi: 10.1162/15353500200404127

            2.   Rix A, Lederle W, Theek B,  et al. Advanced ultrasound   12.  Kwee RM, Kwee TC. Whole-body MRI for preventive health
               technologies for diagnosis and therapy.  J  Nucl  Med.   screening: A  systematic review of the literature.  J  Magn
               2018;59(5):740-746.                                Reson Imaging. 2019;50(5):1489-1503.
               doi: 10.2967/jnumed.117.200030                     doi: 10.1002/jmri.26736
            3.   Tubiana M. Wilhelm Conrad Röntgen and the discovery of   13.  Buxton RB. The physics of functional magnetic resonance
               X-rays. Bull Acad Natl Med. 1996;180(1):97-108.    imaging (fMRI). Rep Prog Phys. 2013;76(9):096601.
            4.   Withers PJ, Bouman C, Carmignato S, et al. X-ray computed      doi: 10.1088/0034-4885/76/9/096601
               tomography. Nat Rev Methods Prim. 2021;1(1):18.  14.  1Hansen SB, Bender D. Advancement in production of
               doi: 10.1038/s43586-021-00015-4                    radiotracers. Semin Nuclear Med. 2022;52(3):266-275.
            5.   Brenner DJ, Hall EJ. Computed Tomography--an      doi: 10.1053/j.semnuclmed.2021.10.003
               increasing source of radiation exposure.  New Engl J Med.   15.  Sarıgül M, Ozyildirim BM, Avci M. Differential convolutional
               2007;357(22):2277-2284.                            neural network. Neural Netw. 2019;116:279-287.
               doi: 10.1056/NEJMra072149                          doi: 10.1016/j.neunet.2019.04.025
            6.   Pullicino P, du Boulay GH, Kendall BE. Xenon enhancement   16.  Lee JG, Jun S, Cho YW,  et al. Deep learning in
               for computed tomography of the spinal cord. Neuroradiology.   medical imaging: General overview.  Korean J Radiol.
               1979;18(2):63-66.                                  2017;18(4):570-584.
               doi: 10.1007/bf00344823                            doi: 10.3348/kjr.2017.18.4.570
            7.   Willemink MJ, Noël PB. The evolution of image   17.  Yasin M, Sarıgül M, Avci M. Logarithmic learning
               reconstruction for CT-from filtered back projection to   differential convolutional neural network.  Neural Netw.
               artificial intelligence. Eur Radiol. 2019;29(5):2185-2195.  2024;172:106114.
               doi: 10.1007/s00330-018-5810-7                     doi: 10.1016/j.neunet.2024.106114
            8.   Xian JF, Chen M, Jin ZY. Magnetic resonance imaging   18.  Savadjiev P, Chong J, Dohan A,  et al. Demystification of
               in  clinical  medicine:  Current  status  and  potential   AI-driven medical image interpretation: Past, present and
               future developments in China.  Chin Med J  (Engl).   future. Eur Radiol. 2019;29(3):1616-1624.
               2015;128(5):569-570.                               doi: 10.1007/s00330-018-5674-x
               doi: 10.4103/0366-6999.151637                   19.  Tatsugami F, Nakaura T, Yanagawa M,  et al. Recent
                                                                  advances in artificial intelligence for cardiac CT: Enhancing
            9.   Moran CM, Thomson AJW. Preclinical ultrasound    diagnosis and prognosis prediction. Diagn Interv Imaging.
               imaging-a review of techniques and imaging applications.   2023;104(11):521-528.
               Front Phys. 2020;8:124.
                                                                  doi: 10.1016/j.diii.2023.06.011
               doi: 10.3389/fphy.2020.00124
                                                               20.  Zhu  B,  Liu  JZ,  Cauley  SF,  Rosen  BR,  Rosen  MS.  Image
            10.  Wang RF, Liu M. Study on neuroreceptor imaging with   reconstruction by domain-transform manifold learning.
               radionuclide tracing in vivo. Beijing Da Xue Xue Bao Yi Xue   Nature. 2018;555(7697):487-492.
               Ban = J Peking Univ Health Sci. 2007;39(5):550-554.
                                                                  doi: 10.1038/nature25988
            11.  Gremlich HU, Martínez V, Kneuer R,  et al. Noninvasive
               assessment of gastric emptying by near-infrared fluorescence   21.  Zaharchuk G, Davidzon G. Artificial intelligence for
               reflectance  imaging  in  mice:  Pharmacological  validation   optimization and interpretation of PET/CT and PET/MR
               with tegaserod, cisapride, and clonidine.  Mol Imaging.   images. Semin Nucl Med. 2021;51(2):134-142.
               2004;3(4):303-311.                                 doi: 10.1053/j.semnuclmed.2020.10.001















            Volume 7 Issue 3 (2024)                         10                               doi: 10.36922/itps.3360
   89   90   91   92   93   94   95   96   97   98   99